• Title/Summary/Keyword: Sub-channel Allocation

Search Result 60, Processing Time 0.021 seconds

Region-of-Interest Coding using Sub-Picture Slice Structure (내부 영상 슬라이스 구조를 이용한 관심 영역 부호화)

  • 김우식
    • Journal of Broadcast Engineering
    • /
    • v.7 no.4
    • /
    • pp.335-344
    • /
    • 2002
  • A sub-picture slice structure is proposed which can perform the region-of-interest coding effectively, where the subjective quality can be improved by coding the region-of-interest in higher quality than the background region. In addition, the bit allocation mechanism is Proposed where the interval between quantization parameters of the foreground and background region is fixed. And the method to reduce the boundary effect between the foreground and background region is proposed. The foreground region is better protected to the network channel error than the background region. which results in the overall subjective quality improvement in the error prone environments.

Time Domain Multiple-channel Signal Processing Method for Converting the Variable Frequency Band (가변 주파수 변환을 위한 시간 영역 다중채널 신호처리 알고리즘)

  • Yoo, Jae-Ho;Kim, Hyeon-Su;Lee, Kyu-Ha;Lee, Jung-Sub;Chung, Jae-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.71-79
    • /
    • 2010
  • The algorithm of multiple channel signal processing requires the flexibility of variable frequency band, efficient allocation of transmission power, and flexible frequency band reallocation to satisfy various service types which requires different transmission rates and frequency band. This paper proposes an improved multiple channel signal processing for converting the frequency band of multiple carrier signals efficiently using a window function and DFT in the time domain. In contrast to the previous algorithm of multiple-channel signal processing performing band-pass signal processing in the frequency domain, the proposed algorithm is a method of block signal processing using a window function in the time domain. In addition, the complexity of proposed algorithm of the window function is lower than that of the previous algorithm performing signal processing in the frequency domain, and it performs the frequency band transform efficiently. The computer simulation result shows that the perfect reconstruction of output signal and the flexible frequency band reallocation is performed efficiently by the proposed algorithm.

FBLA (Flexible Block-wise Loading Algorithm) for Effective Resource Allocation and Reduction of the Uplink Feedback Information in OFDMA System (OFDMA 시스템에서 효율적인 자원할당과 상향링크 궤환 정보 축소를 위한 FBL (Flexible Block-wise Loading) 알고리즘)

  • Sun, Tae-Hyung;Ko, Sang-Jun;Chang, Kyung-Hi;Hwang, Sung-Hyun;Song, Myung-Sun;Kim, Chang-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.608-616
    • /
    • 2007
  • OFDM Systems for multi-user use adaptive modulation and ending (AMC) which is a method that selects suitable modulation order and code rate depending on channel state of each user. Using AMC, OFDM system can provide high quality and reliable communication. Base station using AMC scheme requires downlink channel information of each terminal to operate optimality. However, under practical system environment, it is unsuitable to transmit all channel information because uplink bandwidth of the system is limited. In this paper, we propose a flexible block-wise loading (FBL) algorithm combined with a novel CQI feedback scheme with reduced number of required bits to optimize the performance of AMC system. Proposed algorithm allocates sub-carrier groups dynamically to improve the sector throughput and outage probability performance.

Spectrum Reuse Schemes with Power Control for Device-to-Device Communication in LTE-Advanced Cellular Network

  • Chhorn, Sok;Yoon, Seok-Ho;Seo, Si-O;Kim, Seung-Yeon;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4819-4834
    • /
    • 2015
  • The spectral efficiency of cellular networks can be improved when proximate users engage in device-to-device (D2D) communications to communicate directly without going through a base station. However, D2D communications that are not properly designed may generate interference with existing cellular networks. In this paper, we study resource allocation and power control to minimize the probability of an outage and maximize the overall network throughput. We investigate three power control-based schemes: the Partial Co-channel based Overlap Resource Power Control (PC.OVER), Fractional Frequency Reuse based Overlap Resource Power Control (FFR.OVER) and Fractional Frequency Reuse based Adaptive Power Control (FFR.APC) and also compare their performance. In PC.OVER, a certain portion of the total bandwidth is dedicated to the D2D. The FFR.OVER and FFR.APC schemes combine the FFR techniques and the power control mechanism. In FFR, the entire frequency band is partitioned into two parts, including a central and edge sub-bands. Macrocell users (mUEs) transmit using uniform power in the inner and outer regions of the cell, and in all three schemes, the D2D receivers (D2DRs) transmit with low power when more than one D2DRs share a resource block (RB) with the macrocells. For PC.OVER and FFR.OVER, the power of the D2DRs is reduced to its minimum, and for the FFR.APC scheme, the transmission power of the D2DRs is iteratively adjusted to satisfy the signal to interference ratio (SIR) threshold. The three schemes exhibit a significant improvement in the overall system capacity as well as in the probability of a user outage when compared to a conventional scheme.

Asymmetric Joint Scheduling and Rate Control under Reliability Constraints in Cognitive Radio Networks (전파인지 네트워크에서 신뢰성 보장 비대칭 스케줄-데이터율 결합제어)

  • Nguyen, Hung Khanh;Song, Ju-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.23-31
    • /
    • 2012
  • Resource allocation, such as joint rate control and scheduling, is an important issue in cognitive radio networks. However, it is difficult to jointly consider the rate control and scheduling problem due to the stochastic behavior of channel availability in cognitive radio networks. In this paper, we propose an asymmetric joint rate control and scheduling technique under reliability constraints in cognitive radio networks. The joint rate control and scheduling problem is formulated as a convex optimization problem and substantially decomposed into several sub-problems using a dual decomposition method. An algorithm for secondary users to locally update their rate that maximizes the utility of the overall system is also proposed. The results of simulations revealed that the proposed algorithm converges to a globally optimal solution.

Throughput Performance analysis of AMC based on New SNR Estimation Algorithm using Preamble (프리앰블을 이용한 새로운 SNR 추정 알고리즘 기반의 AMC 기법의 전송률 성능 분석)

  • Seo, Chang-Woo;Portugal, Sherlie;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.6-14
    • /
    • 2011
  • The fast growing of the number of users requires the development of reliable communication systems able to provide higher data rates. In order to meet those requirements, techniques such as Multiple Input Multiple Out (MIMO) and Orthogonal Frequency Division multiplexing (OFDM) have been developed in the recent years. In order to combine the benefits of both techniques, the research activity is currently focused on MIMO-OFDM systems. In addition, for a fast wireless channel environment, the data rate and reliability can be optimized by setting the modulation and coding adaptively according to the channel conditions; and using sub-carrier frequency, and power allocation techniques. Depending on how accurate the feedback-based system obtain the channel state information (CSI) and feed it back to the transmitter without delay, the overall system performance would be poor or optimal. In this paper, we propose a Signal to Noise Ratio (SNR) estimation algorithm where the preamble is known for both sides of the transciever. Through simulations made over several channel environments, we prove that our proposed SNR estimation algorithm is more accurate compared with the traditional SNR estimation. Also, We applied AMC on several channel environments using the parameters of IEEE 802.11n, and compared the Throughput performance when using each of the different SNR Estimation Algorithms. The results obtained in the simulation confirm that the proposed algorithm produces the highest Throughput performance.

New SNR Estimation Algorithm using Preamble and Performance Analysis (프리앰블을 이용한 새로운 SNR 추정 알고리즘 제안 및 성능 분석)

  • Seo, Chang-Woo;Yoon, Gil-Sang;Portugal, Sherlie;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.3
    • /
    • pp.6-12
    • /
    • 2011
  • The fast growing of the number of users requires the development of reliable communication systems able to provide higher data rates. In order to meet those requirements, techniques such as Multiple Input Multiple Out (MIMO) and Orthogonal Frequency Division multiplexing (OFDM) have been developed in the recent years. In order to combine the benefits of both techniques, the research activity is currently focused on MIMO-OFDM systems. In addition, for a fast wireless channel environment, the data rate and reliability can be optimized by setting the modulation and coding adaptively according to the channel conditions; and using sub-carrier frequency, and power allocation techniques. Depending on how accurate the feedback-based system obtain the channel state information (CSI) and feed it back to the transmitter without delay, the overall system performance would be poor or optimal. In this paper, we propose a Signal to Noise Ratio (SNR) estimation algorithm where the preamble is known for both sides of the transciever. Through simulations made over several channel environments, we prove that our proposed SNR estimation algorithm is more accurate compared with the traditional SNR estimation.

An OFDMA-Based Next-Generation Wireless Downlink System Design with Hybrid Multiple Access and Frequency Grouping Techniques

  • Lee Won-Ick;Lee Byeong Gi;Lee Kwang Bok;Bahk Saewoong
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.115-125
    • /
    • 2005
  • This paper discusses how to effectively design a next-generation wireless communication system that can possibly provide very high data-rate transmissions and versatile quality services. In order to accommodate the sophisticated user requirements and diversified user environments of the next-generation systems, it should be designed to take an efficient and flexible structure for multiple access and resource allocation. In addition, the design should be optimized for cost-effective usage of resources and for efficient operation in a multi-cell environment. As orthogonal frequency division multiple access (OFDMA) has turned out in recent researches to be one of the most promising multiple access techniques that can possibly meet all those requirements through efficient radio spectrum utilization, we take OFDMA as the basic framework in the next-generation wireless communications system design. So, in this paper, we focus on introducing an OFDMA-based downlink system design that employs the techniques of hybrid multiple access (HMA) and frequency group (FG) in conjunction with intra-frequency group averaging (IFGA). The HMA technique combines various multiple access schemes on the basis of OFDMA system, adopting the multiple access scheme that best fits to the given user condition in terms of mobility, service, and environment. The FG concept and IFGA technique help to reduce the feedback overhead of OFDMA system and the other-cell interference (OCI) problem by grouping the sub-carriers based on coherence band-widths and by harmonizing the channel condition and OCI of the grouped sub-carriers.

Energy Efficient Sequential Sensing in Multi-User Cognitive Ad Hoc Networks: A Consideration of an ADC Device

  • Gan, Xiaoying;Xu, Miao;Li, He
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.188-194
    • /
    • 2012
  • Cognitive networks (CNs) are capable of enabling dynamic spectrum allocation, and thus constitute a promising technology for future wireless communication. Whereas, the implementation of CN will lead to the requirement of an increased energy-arrival rate, which is a significant parameter in energy harvesting design of a cognitive user (CU) device. A well-designed spectrum-sensing scheme will lower the energy-arrival rate that is required and enable CNs to self-sustain, which will also help alleviate global warming. In this paper, spectrum sensing in a multi-user cognitive ad hoc network with a wide-band spectrum is considered. Based on the prospective spectrum sensing, we classify CN operation into two modes: Distributed and centralized. In a distributed network, each CU conducts spectrum sensing for its own data transmission, while in a centralized network, there is only one cognitive cluster header which performs spectrum sensing and broadcasts its sensing results to other CUs. Thus, a wide-band spectrum that is divided into multiple sub-channels can be sensed simultaneously in a distributed manner or sequentially in a centralized manner. We consider the energy consumption for spectrum sensing only of an analog-to-digital convertor (ADC). By formulating energy consumption for spectrum sensing in terms of the sub-channel sampling rate and whole-band sensing time, the sampling rate and whole-band sensing time that are optimal for minimizing the total energy consumption within sensing reliability constraints are obtained. A power dissipation model of an ADC, which plays an important role in formulating the energy efficiency problem, is presented. Using AD9051 as an ADC example, our numerical results show that the optimal sensing parameters will achieve a reduction in the energy-arrival rate of up to 97.7% and 50% in a distributed and a centralized network, respectively, when comparing the optimal and worst-case energy consumption for given system settings.

Frame Synchronization Algorithm based on Differential Correlation for Burst OFDM System (Burst OFDM 시스템을 위한 차동 상관 기반의 프레임 동기 알고리즘)

  • Um Jung-Sun;Do Joo-Hyun;Kim Min-Gu;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.1017-1026
    • /
    • 2005
  • In burst OFDM system, the frame synchronization should be performed first for the acquisition of received frame and the estimation of the correct FFT-window position. The conventional frame synchronization algorithms using design features of the preamble symbol, the repetition pattern of the OFDM symbol by pilot sub-carrier allocation rule and Cyclic Prefix(CP), has difficulty in the detection of precise frame timing because its correlation characteristics would increase and decrease gradually. Also, the algorithm based on the correlation between the reference signal and the received signal has performance degradation due to frequency offset. Therefore, we adopt a differential correlation method that is robust to frequency offset and has the clear peak value at the correct frame timing for frame synchronization. However, performance improvement is essential for differential correlation methods, since it usually shows multiple peak values due to the repetition pattern. In this paper, we propose an enhanced frame synchronization algorithm based on the differential correlation method that shows a clear single peak value by using differential correlation between samples of identical repeating pattern. We also introduce a normalization scheme which normalizes the result of differential correlation with signal power to reduce the frame timing error in the high speed mobile channel environments.