• Title/Summary/Keyword: Sub-bituminous Coal-Fired Boiler

Search Result 3, Processing Time 0.019 seconds

A Numerical Study on the Effects of SOFA on NOx Emission Reduction in 500MW Class Sub-bituminous Coal-Fired Boiler (500MW급 아역청탄 전소 보일러의 NOx 배출저감에 미치는 SOFA 영향에 관한 연구)

  • Kang, Ki-Tae;Song, Ju-Hun;Yoon, Min-Ji;Lee, Byoung-Hwa;Kim, Seung-Mo;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.858-868
    • /
    • 2009
  • A numerical investigation has been carried out about the performance of a 500MW class tangentially coal-fired boiler, focusing on the optimization of separated overfire air (SOFA) position to reduce NOx emission. For this purpose, a comprehensive combination of NOx chemistry models has been employed in the numerical simulation of a particle-laden flow along with solid fuel combustion and heat and mass transfer. A reasonable agreement has been shown in baseline cases for predicted operational parameters compared with experimental data measured in the boiler. A further SOFA calculation has been made to obtain optimum elevation and position of SOFA port. Additionally, clarifying on the effect of SOFA on NOx emission has been carried out in the coal-fired boiler. As a result, this paper is valuable to provide an information about the optimum position of SOFA and the mechanism by which the SOFA would affect NOx emission.

The Effect of Multi-Coal Combustion on the Generation of Slagging in a Bituminous Coal-fired Power Plant Boiler (연탄 화력발전소 보일러에서 다탄종 연소가 슬래깅 발생에 미치는 영향)

  • Park, Jihoon;Yoo, Hoseon
    • Plant Journal
    • /
    • v.18 no.1
    • /
    • pp.55-61
    • /
    • 2022
  • In this study, I analyzed the effect of slagging caused by blending bituminous coal and subbituminous coal while maintaining the generator output, combustion conditions, and ventilation conditions for 870MW thermal power plant designed with bituminous coal. Accordingly I proposed an acceptable method of blending coal method. the blending ratio of sub-bituminous coal was adjusted to 10%, 20%, 40%, 60%, 80%, etc. to confirm ultimate analysis, proximate analysis, ash fusion temperature change, slagging indices, etc. Proper blending coal conditions are blending with sub-bituminous coal at 40% or less, ratio of base component to acid component(B/A) is 0.4 or less or 1 or more, total alkali(TA) is 3.5 or less, fusion slagging index(Rfs) is 1,345℃ or more, and ash content is 13% or less in ultimate analysis, the ash content in proximate analysis is 15% or less, and the initial deformation temperature(IDT) should be at least 1,200℃ or more

  • PDF

Characteristics of Unburned Material Derived from Coal-fired Power Plant Burning Low Grade Coal (저급탄 연소 석탄회의 미연물질 특성 분석)

  • Park, Ho-Young;Kim, Young-Ju;Kim, Tae-Hyung;Baek, Se-Hyun;Kim, Kyung-Soo;Jeoung, Kwon-Dal
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.68-74
    • /
    • 2012
  • Sub-bituminous coals have been used increasingly in coal-fired power plants with a proportion of over 50% in the blend with bituminous coals. As a result, the unburned material in fly ash has increased and is causing problems in utilizing the fly ash as an additive for concrete production. In this study, analysis of fly ash obtained from a 500 MWe power plant was carried out and unburned material in the fly ash found to be soot. The coals used in the plant were analyzed with CPD model to investigate the sooting potential depending on the coal type and blending ratio.