• Title/Summary/Keyword: Sub-Himalayan Region

Search Result 8, Processing Time 0.028 seconds

Effect of Different Seasons on Cross-Bred Cow Milk Composition and Paneer Yield in Sub-Himalayan Region

  • Sharma, R.B.;Kumar, Manish;Pathak, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.528-530
    • /
    • 2002
  • The study was designed to evaluate the seasonal influences on cross-bred cow milk composition and paneer yield in Dhauladhar mountain range of sub-himalayan region. Fifty samples from each season were collected from a herd of $Jersey{\times}Red\;Sindhi{\times}Local$ cross-bred cows during summer (April-June), rainy (July-September) and winter (November-February) and analyzed for fat, total solids (TS) and solids not fat (SNF). Paneer was prepared by curdling milk at $85{\pm}2^{\circ}C$ with 2.5 per cent citric acid solution. Overall mean for fat, TS and SNF content of milk and paneer yield were 4.528, 13.310, 8.754 and 15.218 per cent respectively. SNF and TS content varied among seasons being highest in winter (8.983% and 13.639%) followed by summer (8.835% and 13.403%) and lowest in rainy season (8.444% and 12.888%). Paneer yield was lowest (14.792%) in rainy season and highest (15.501%) in winter season.

Growth performance of planted population of Pinus roxburghii in central Nepal

  • Tiwari, Achyut;Thapa, Nita;Aryal, Sugam;Rana, Prabina;Adhikari, Shankar
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.264-274
    • /
    • 2020
  • Background: Climate change has altered the various ecosystem processes including forest ecosystem in Himalayan region. Although the high mountain natural forests including treelines in the Himalayan region are mainly reported to be temperature sensitive, the temperature-related water stress in an important growth-limiting factor for middle elevation mountains. And there are very few evidences on growth performance of planted forest in changing climate in the Himalayan region. A dendrochronological study was carried out to verify and record the impact of warming temperature tree growth by using the tree cores of Pinus roxburghii from Batase village of Dhulikhel in Central Nepal with sub-tropical climatic zone. For this total, 29 tree cores from 25 trees of P. roxburghii were measured and analyzed. Result: A 44-year long tree ring width chronology was constructed from the cores. The result showed that the radial growth of P. roxburghii was positively correlated with pre-monsoon (April) rainfall, although the correlation was not significant and negatively correlated with summer rainfall. The strongest negative correlation was found between radial growth and rainfall of June followed by the rainfall of January. Also, the radial growth showed significant positive correlation with that previous year August mean temperature and maximum temperature, and significant negative correlation between radial growth and maximum temperature (Tmax) of May and of spring season (March-May), indicating moisture as the key factor for radial growth. Despite the overall positive trend in the basal area increment (BAI), we have found the abrupt decline between 1995 and 2005 AD. Conclusion: The results indicated that chir pine planted population was moisture sensitive, and the negative impact of higher temperature during early growth season (March-May) was clearly seen on the radial growth. We emphasize that the forest would experience further moisture stress if the trend of warming temperatures continues. The unusual decreasing BAI trend might be associated with forest management processes including resin collection and other disturbances. Our results showed that the planted pine forest stand is sub-healthy due to major human intervention at times. Further exploration of growth climate response from different climatic zones and management regimes is important to improve our understanding on the growth performance of mid-hill pine forests in Nepal.

Biomass, Primary Nutrient and Carbon Stock in a Sub-Himalayan Forest of West Bengal, India

  • Shukla, Gopal;Chakravarty, Sumit
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.12-23
    • /
    • 2018
  • Quantitative information on biomass and available nutrients are essential for developing sustainable forest management strategies to regulate atmospheric carbon. An attempt was made at Chilapatta Reserve Forest in Duars region of West Bengal to quantify its above and below ground carbon along with available "N", "P" and "K" in the soil. Stratified random nested quadrats were marked for soil, biomass and litter sampling. Indirect or non-destructive procedures were employed for biomass estimation. The amount of these available nutrients and organic carbon quantified in soil indicates that the forest soil is high in organic carbon and available "K" and medium in phosphorus and nitrogen. The biomass, soil carbon and total carbon (soil C+C in plant biomass) in the forest was 1,995.98, 75.83 and $973.65Mg\;ha^{-1}$. More than 90% of the carbon accumulated in the forest was contributed by the trees. The annual litter production of the forest was $5.37Mg\;ha^{-1}$. Carbon accumulation is intricately linked with site quality factors. The estimated biomass of $1,995.98Mg{\cdot}ha^{-1}$ clearly indicates this. The site quality factor i.e. tropical moist deciduous with optimum availability of soil nutrients, heavy precipitation, high mean monthly relative humidity and optimum temperature range supported luxuriant growth which was realized as higher biomass accumulation and hence higher carbon accumulated.

A COMPARATIVE STUDY OF 1819,1844 AND 2001 EARTHQUAKES IN GUJARAT

  • Rathore, Narpat Singh;Verma, Narender
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.366-368
    • /
    • 2003
  • The Rann of Kachchh in Gujarat in the Western part of India is seismically the most active area outside Himalayan Belt. Several severe earthquakes of which the 1819 Rann of Kachchh and 2001 Bhuj Earthquakes are the severest recorded have rocked the region. This paper is an attempt to make a comparative study of the 1819,1844 and 2001 earthquakes. The study of 1819 and 1944 earthquakes is based on secondary accounts while 2001 Bhuj earthquake is based on remote Sensing. From a comparative study of the three earthquakes many interesting conclusions can be drawn. These earthquakes have been the result of accumulation of stress caused due to the collision of Indian Plate with the Eurasian Plate, which is continuously moving northwards. The earthquakes have been felt over large part of the Indian Sub-continent. These have resulted in creation of several faults that have activated periodically. Prominent of them are the Allah Bund Fault, Manfara Fault and Budharmora Fault. These are strike slip faults that get periodically activated. In future too these faults are going to be the most vulnerable to any seismic activity with the probability of high intensity earthquakes occurring along them in future too.

  • PDF

Genomic Analyses of Toll-like Receptor 4 and 7 Exons of Bos indicus from Temperate Sub-himalayan Region of India

  • Malik, Y.P.S.;Chakravarti, S.;Sharma, K.;Vaid, N.;Rajak, K.K.;Balamurugan, V.;Biswas, S.K.;Mondal, B.;Kataria, R.S.;Singh, R.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.7
    • /
    • pp.1019-1025
    • /
    • 2011
  • Toll-like receptors (TLRs) play an important role in the recognition of invading pathogens and the modulation of innate immune responses in mammals. The TLR4 and TLR7 are well known to recognize the bacterial lipopolysaccharide (LPS) and single stranded (ssRNA) ligands, respectively and play important role in host defense against Gram-negative bacteria and ssRNA viruses. In the present study, coding exon fragments of these two TLRs were identified, cloned, sequenced and analyzed in terms of insertion-deletion polymorphism, within bovine TLRs 4 and 7, thereby facilitating future TLR signaling and association studies relevant to bovine innate immunity. Comparative sequence analysis of TLR 4 exons revealed that this gene is more variable, particularly the coding frame (E3P1), while other parts showed percent identity of 95.7% to 100% at nucleotide and amino acid level, respectivley with other Bos indicus and Bos taurus breeds from different parts of the world. In comparison to TLR4, sequence analysis of TLR7 showed more conservation among different B. indicus and B. taurus breeds, except single point mutation at 324 nucleotide position (AAA to AAM) altering a single amino acid at 108 position (K to X). Percent identity of TLR7 sequences (all 3 exons) was between 99.2% to 100% at nucleotide and amino acid level, when compared with available sequence database of B. indicus and B. taurus. Simple Modular Architecture Research Tool (SMART) analysis showed variations in the exon fragments located in the Leucine Rich Repeat (LRR) region, which is responsible for binding with the microbial associated molecular patterns and further, downstream signaling to initiate anti-microbial response. Considering importance of TLR polymorphism in terms of innate immunity, further research is warranted.

Biodiversity Conservation & World Natural Heritage in Bangladesh (방글라데시의 생물다양성 보전 및 세계자연유산)

  • Nayna, Omme Kulsum;Lee, Sang Don
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.5
    • /
    • pp.376-384
    • /
    • 2017
  • Bangladesh is a South Asian country with subtropical monsoonal climate between the intersection of the Indo-Himalayan and Indo-Chinese sub-regions, is known as biodiversity hotspot of the Asian region. The country has different types of forest like deciduous forest, evergreen forest, mixed forest, haor (wetlands) and mangrove forest. The natural beauty of the country is increased with the presence of so many rivers, longest sea beach of the world, green plants, critical hilly regions and green agricultural forest widely spread here and there. Sundarbans is the world largest mangrove forest and world natural heritage site declared by UNESCO in 1999 situated in Bangladesh and India. About 62 percent of this mangrove forest is situated in Bangladesh and there are so many plants and animals are found in this forest. To meet the increasing demand of the large population most of the natural ecosystem is now altered, deforestation rate is increased, natural habitat of the species is disturbed. Due to the imbalance of the climate and natural system many of the rare species of the world found this region is now endangered and some of the species are extinct. Directly or indirectly they are benefited from natural resources. At present time community, based ecotourism is also an important source of income for rural poor peoples. To protect the natural resources the government is now developed so many conservation acts and policy as well NGOs are also doing work for the conservation of ecosystem and biodiversity. At present transboundary pollutants and so many natural disasters also destruct the natural resources of Bangladesh.