• Title/Summary/Keyword: Sub spatial

Search Result 805, Processing Time 0.032 seconds

Statistical Back Trajectory Analysis for Estimation of CO2 Emission Source Regions (공기괴 역궤적 모델의 통계 분석을 통한 이산화탄소 배출 지역 추정)

  • Li, Shanlan;Park, Sunyoung;Park, Mi-Kyung;Jo, Chun Ok;Kim, Jae-Yeon;Kim, Ji-Yoon;Kim, Kyung-Ryul
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.245-251
    • /
    • 2014
  • Statistical trajectory analysis has been widely used to identify potential source regions for chemically and radiatively important chemical species in the atmosphere. The most widely used method is a statistical source-receptor model developed by Stohl (1996), of which the underlying principle is that elevated concentrations at an observation site are proportionally related to both the average concentrations on a specific grid cell where the observed air mass has been passing over and the residence time staying over that grid cell. Thus, the method can compute a residence-time-weighted mean concentration for each grid cell by superimposing the back trajectory domain on the grid matrix. The concentration on a grid cell could be used as a proxy for potential source strength of corresponding species. This technical note describes the statistical trajectory approach and introduces its application to estimate potential source regions of $CO_2$ enhancements observed at Korean Global Atmosphere Watch Observatory in Anmyeon-do. Back trajectories are calculated using HYSPLIT 4 model based on wind fields provided by NCEP GDAS. The identified $CO_2$ potential source regions responsible for the pollution events observed at Anmyeon-do in 2010 were mainly Beijing area and the Northern China where Haerbin, Shenyang and Changchun mega cities are located. This is consistent with bottom-up emission information. In spite of inherent uncertainties of this method in estimating sharp spatial gradients within the vicinity of the emission hot spots, this study suggests that the statistical trajectory analysis can be a useful tool for identifying anthropogenic potential source regions for major GHGs.

분할영상의 계층적 구조를 이용한 주제도 갱신방법

  • 조현국;이승호;김철민;김경민;원현규
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.347-347
    • /
    • 2004
  • 임상도는 항공사진을 판독하여 얻어진 산림에 관한 정보를 지형도(1/25,000)에 도화 작성한 도면으로 전국 산림조사와 연계하여 10년을 주기로 순환제작 되며, 현재 제 4차 수치임상도가 제작 중에 있다 임상도는 여러 산림관련 주제도 중 가장 많이 활용되는 도면으로 산림 분야뿐만 아니라 다른 분야에서도 널리 활용되고 있다. 그러나 10년을 주기로 제작되므로 부분적으로 현실과 부합하지 않는 내용이 포함되어 있어 각종 계획수립 및 활용에 장애요인으로 작용하고 있다. 따라서 실제 임상정보를 획득할 수 있도록 지속적인 갱신이 필요하다. 그러나 임상도의 부분적 갱신을 위하여 별도의 항공사진을 촬영하는 것은 현실적인 어려움이 있으며, 최근 고해상도 위성영상이 활용 가능하게 됨에 따라 임상도의 갱신에도 활용될 수 있을 것으로 기대되고 있다. 본 연구에서는 고해상도 위성영상인 IKONOS를 이용하여 수치임상도를 갱신하는 방법을 제시하였다. 연구대상지는 제 4차 임상도의 수치화가 완료된 전라북도 완주 지역으로 1:25000 지형도의 도엽명 대아와 읍내의 일부지역이다. 영상자료는 2001년 8월 18일에 촬영된 IKONOS Multispectral 자료를 이용하였다. 영상의 기하보정을 위하여 RPC Model과 1:25000 수치지형도로부터 만들어진 DEM을 사용하였다. 기하보정된 영상을 이용하여 영상분할(Segmentation)을 실시하여 서로 중복되지 않는 동질한 지역으로 구분하였다. 이때 기존의 수치임상도를 Super-Object로 사용하여 영상을 분할할 때 형성될 수 있는 가장 큰 Segment로 제한하였으며 Super-Object의 경계를 벗어나지 않는 보다 작은 Sub-Object를 만들도록 하여 분할영상의 계층적 구조를 형성하였다. 어느 한 임상내에서 변화가 발생하면 변화가 발생한 지역은 변화가 발생하지 않은 지역과 서로 다른 분광특성을 나타내므로 별도의 Segment를 형성하게 된다. 따라서 임상도의 경계선으로부터 획득된 Super-Object의 분광반사 값과 그 안에서 형성된 Sub-Object의 분광반사값의 차이를 이용하여 임상도의 갱신을 위한 변화지역을 탐지하였다.

  • PDF

Protective role of caffeic acid in an Aβ25-35-induced Alzheimer's disease model

  • Kim, Ji Hyun;Wang, Qian;Choi, Ji Myung;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.9 no.5
    • /
    • pp.480-488
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Alzheimer's disease (AD) is characterized by deficits in memory and cognitive functions. The accumulation of amyloid beta peptide ($A{\beta}$) and oxidative stress in the brain are the most common causes of AD. MATERIALS/METHODS: Caffeic acid (CA) is an active phenolic compound that has a variety of pharmacological actions. We studied the protective abilities of CA in an $A{\beta}_{25-35}$-injected AD mouse model. CA was administered at an oral dose of 10 or 50 mg/kg/day for 2 weeks. Behavioral tests including T-maze, object recognition, and Morris water maze were carried out to assess cognitive abilities. In addition, lipid peroxidation and nitric oxide (NO) production in the brain were measured to investigate the protective effect of CA in oxidative stress. RESULTS: In the T-maze and object recognition tests, novel route awareness and novel object recognition were improved by oral administration of CA compared with the $A{\beta}_{25-35}$-injected control group. These results indicate that administration of CA improved spatial cognitive and memory functions. The Morris water maze test showed that memory function was enhanced by administration of CA. In addition, CA inhibited lipid peroxidation and NO formation in the liver, kidney, and brain compared with the $A{\beta}_{25-35}$-injected control group. In particular, CA 50 mg/kg/day showed the stronger protective effect from cognitive impairment than CA 10 mg/kg/day. CONCLUSIONS: The present results suggest that CA improves $A{\beta}_{25-35}$-induced memory deficits and cognitive impairment through inhibition of lipid peroxidation and NO production.

Sparse reconstruction of guided wavefield from limited measurements using compressed sensing

  • Qiao, Baijie;Mao, Zhu;Sun, Hao;Chen, Songmao;Chen, Xuefeng
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.369-384
    • /
    • 2020
  • A wavefield sparse reconstruction technique based on compressed sensing is developed in this work to dramatically reduce the number of measurements. Firstly, a severely underdetermined representation of guided wavefield at a snapshot is established in the spatial domain. Secondly, an optimal compressed sensing model of guided wavefield sparse reconstruction is established based on l1-norm penalty, where a suite of discrete cosine functions is selected as the dictionary to promote the sparsity. The regular, random and jittered undersampling schemes are compared and selected as the undersampling matrix of compressed sensing. Thirdly, a gradient projection method is employed to solve the compressed sensing model of wavefield sparse reconstruction from highly incomplete measurements. Finally, experiments with different excitation frequencies are conducted on an aluminum plate to verify the effectiveness of the proposed sparse reconstruction method, where a scanning laser Doppler vibrometer as the true benchmark is used to measure the original wavefield in a given inspection region. Experiments demonstrate that the missing wavefield data can be accurately reconstructed from less than 12% of the original measurements; The reconstruction accuracy of the jittered undersampling scheme is slightly higher than that of the random undersampling scheme in high probability, but the regular undersampling scheme fails to reconstruct the wavefield image; A quantified mapping relationship between the sparsity ratio and the recovery error over a special interval is established with respect to statistical modeling and analysis.

Analyzing the Relative Importance for the Development Plan of the Public Health Care System (공공보건의료체계 발전 방안에 대한 상대적 중요도 분석)

  • Kim, You Ho
    • Journal of health informatics and statistics
    • /
    • v.43 no.4
    • /
    • pp.300-306
    • /
    • 2018
  • Objectives: The purpose of this study is to demonstrate empirically through a specialist AHP analysis what factors should be more important in the development of the public health care system. In addition, we will use Analytic Hierarchy Process (AHP) method for experts to achieve research purpose. Methods: The data analysis method of this study is as follows. First, we set up three metrics in order to measure the relative importance between the factors to be improved for the development of the public health care system and each of the sub-factors. A total of nine measurements (items) were set by combining the three measurement criteria for each measurement index. Second, the relative importance and priority analysis use the AHP analysis. Third, the subjects of this study were 15 experts in the field of public health care. The statistical processing was performed using the Expert Choice 2000 statistical program. Results: In order to development of the public health care system, experts ranked the most important as improvement in the systematic aspect of public health care (56%) as the first priority. Next, the relative importance analysis of the measurement items considering the multiple-weights of the sub-factors is as follows. The strengthen institutional improvement (revitalization of secondary public function hospital) was the number one, strengthen cooperation between agencies was the second, and Re-establishing the role of local public health care system was the third place. Conclusions: Considering the relative importance, factors that are considered to be important in the first place may not be improved as the best policy alternative due to limitations in spatial, temporal, financial, and institutional aspects. In this case, we suggest that we should choose the best policy alternative by using prioritization considering relative weights.

Precise System Models using Crystal Penetration Error Compensation for Iterative Image Reconstruction of Preclinical Quad-Head PET

  • Lee, Sooyoung;Bae, Seungbin;Lee, Hakjae;Kim, Kwangdon;Lee, Kisung;Kim, Kyeong-Min;Bae, Jaekeon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1764-1773
    • /
    • 2018
  • A-PET is a quad-head PET scanner developed for use in small-animal imaging. The dimensions of its volumetric field of view (FOV) are $46.1{\times}46.1{\times}46.1mm^3$ and the gap between the detector modules has been minimized in order to provide a highly sensitive system. However, such a small FOV together with the quad-head geometry causes image quality degradation. The main factor related to image degradation for the quad-head PET is the mispositioning of events caused by the penetration effect in the detector. In this paper, we propose a precise method for modelling the system at the high spatial resolution of the A-PET using a LOR (line of response) based ML-EM (maximum likelihood expectation maximization) that allows for penetration effects. The proposed system model provides the detection probability of every possible ray-path via crystal sampling methods. For the ray-path sampling, the sub-LORs are defined by connecting the sampling points of the crystal pair. We incorporate the detection probability of each sub-LOR into the model by calculating the penetration effect. For comparison, we used a standard LOR-based model and a Monte Carlo-based modeling approach, and evaluated the reconstructed images using both the National Electrical Manufacturers Association NU 4-2008 standards and the Geant4 Application for Tomographic Emission simulation toolkit (GATE). An average full width at half maximum (FWHM) at different locations of 1.77 mm and 1.79 mm are obtained using the proposed system model and standard LOR system model, which does not include penetration effects, respectively. The standard deviation of the uniform region in the NEMA image quality phantom is 2.14% for the proposed method and 14.3% for the LOR system model, indicating that the proposed model out-performs the standard LOR-based model.

Revisiting Suburban Developments: Urban Evolution and Its Implication to Planning (교외개발의 재조명: 도시의 진화와 계획으로의 함의)

  • Kang, Sangjun
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.3
    • /
    • pp.161-172
    • /
    • 2022
  • This study attempts to understand urban evolution characteristics through suburban development cases considered as a contemporary urban issue. Methods are (1) Urban Expansion Intensity Index (UEII) for the 9 cities in the Korea (1980-2010) & 49 cities in the US, (2) Morphological Spatial Pattern Analysis(MSPA) and Entropy for the developed areas in the Chicago Metro (2019). Results are (1) a suburban development could be understood the universal characteristics, (2) the characteristics of the whole region might be appeared to be in a different direction from the characteristics of its sub-cities. Implications are (1) Suburban expansion can be understood as a functionally well served urban change phenomenon and it is important to focus on the functions of sub-level cities, (2) the urban evolutionary perspective makes a difference from the developmental growth perspective. The extensive empirical studies will be beneficial for better understating of urban evolution.

Super-Resolution Transmission Electron Microscope Image of Nanomaterials Using Deep Learning (딥러닝을 이용한 나노소재 투과전자 현미경의 초해상 이미지 획득)

  • Nam, Chunghee
    • Korean Journal of Materials Research
    • /
    • v.32 no.8
    • /
    • pp.345-353
    • /
    • 2022
  • In this study, using deep learning, super-resolution images of transmission electron microscope (TEM) images were generated for nanomaterial analysis. 1169 paired images with 256 × 256 pixels (high resolution: HR) from TEM measurements and 32 × 32 pixels (low resolution: LR) produced using the python module openCV were trained with deep learning models. The TEM images were related to DyVO4 nanomaterials synthesized by hydrothermal methods. Mean-absolute-error (MAE), peak-signal-to-noise-ratio (PSNR), and structural similarity (SSIM) were used as metrics to evaluate the performance of the models. First, a super-resolution image (SR) was obtained using the traditional interpolation method used in computer vision. In the SR image at low magnification, the shape of the nanomaterial improved. However, the SR images at medium and high magnification failed to show the characteristics of the lattice of the nanomaterials. Second, to obtain a SR image, the deep learning model includes a residual network which reduces the loss of spatial information in the convolutional process of obtaining a feature map. In the process of optimizing the deep learning model, it was confirmed that the performance of the model improved as the number of data increased. In addition, by optimizing the deep learning model using the loss function, including MAE and SSIM at the same time, improved results of the nanomaterial lattice in SR images were achieved at medium and high magnifications. The final proposed deep learning model used four residual blocks to obtain the characteristic map of the low-resolution image, and the super-resolution image was completed using Upsampling2D and the residual block three times.

Prediction and Verification of Distribution Potential of the Debris Landforms in the Southwest Region of the Korean Peninsula (한반도 서남부 암설사면지형의 분포가능성 예측 및 검증)

  • Lee, Seong-Ho;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.2
    • /
    • pp.1-17
    • /
    • 2020
  • This study evaluated a debris landform distribution potential area map in the southwest region of the Korean peninsula. A GIS spatial integration technique and logistic regression method were used to produce a distribution potential area map. Seven topographic and environmental factors were considered for analysis and 28 different data set were combined and used to get most effective results. Moreover, in an accuracy assessment, the extracted results of the Distribution Potential area were evaluated by conducting a cross-validation module. Block stream showed the highest accuracy in the combination No. 6, and that DEM (digital elevation model) and TWI (topographic wetness index) have relatively high influences on the production of the Block stream Distribution Potential area map. Talus showed the highest accuracy in the combination No. 13. We also found that slope, TWI and geology have relatively high influences on the production of the Talus Distribution Potential area map. In addition, fieldwork confirmed the accuracy of the input data that were used in this study, and the slope and geology were also similar. It was also determined that these input data were relatively accurate. In the case of angularity, the block stream was composed of sub-rounded and sub-angular systems and Talus showed differences according to the terrain formation. Although the results of the rebound strain measurement using a Schmidt's hammer did not shown any difference in topographic conditions, it is determined that the rebound strain results reflected the underlying geological setting.

A Study on the Availability of Spatial and Statistical Data for Assessing CO2 Absorption Rate in Forests - A Case Study on Ansan-si - (산림의 CO2 흡수량 평가를 위한 통계 및 공간자료의 활용성 검토 - 안산시를 대상으로 -)

  • Kim, Sunghoon;Kim, Ilkwon;Jun, Baysok;Kwon, Hyuksoo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.124-138
    • /
    • 2018
  • This research was conducted to examine the availability of spatial data for assessing absorption rates of $CO_2$ in the forest of Ansan-si and evaluate the validity of methods that analyze $CO_2$ absorption. To statistically assess the $CO_2$ absorption rates per year, the 1:5,000 Digital Forest-Map (Lim5000) and Standard Carbon Removal of Major Forest Species (SCRMF) methods were employed. Furthermore, Land Cover Map (LCM) was also used to verify $CO_2$ absorption rate availability per year. Great variations in $CO_2$ absorption rates occurred before and after the year 2010. This was due to improvement in precision and accuracy of the Forest Basic Statistics (FBS) in 2010, which resulted in rapid increase in growing stock. Thus, calibration of data prior to 2010 is necessary, based on recent FBS standards. Previous studies that employed Lim5000 and FBS (2015, 2010) did not take into account the $CO_2$ absorption rates of different tree species, and the combination of SCRMF and Lim5000 resulted in $CO_2$ absorption of 42,369 ton. In contrast to the combination of SCRMF and Lim5000, LCM and SCRMF resulted in $CO_2$ absorption of 40,696 ton. Homoscedasticity tests for Lim5000 and LCM resulted in p-value <0.01, with a difference in $CO_2$ absorption of 1,673 ton. Given that $CO_2$ absorption in forests is an important factor that reduces greenhouse gas emissions, the findings of this study should provide fundamental information for supporting a wide range of decision-making processes for land use and management.