• 제목/요약/키워드: Sub System

검색결과 8,079건 처리시간 0.035초

De-NOx Characteristics of V2O5 SCR according to the Ratio of TiO2 Crystal Structures

  • Seo, Choong-Kil;Bae, Jaeyoung
    • 동력기계공학회지
    • /
    • 제19권6호
    • /
    • pp.26-32
    • /
    • 2015
  • The purpose of this study is to investigate the de-NOx performance characteristics according to the $TiO_2$ crystal structures ratio of $V_2O_5$ SCR catalysts. The anatase(100%) SCR catalyst showed the highest desorption peak of 80ppm at about $250^{\circ}C$, and $NH_3$ was not desorbed at $500^{\circ}C$. It can be confirmed that there was many $NH_3$ desorbed at a high temperature among other various crystal structures, which is because the catalyst was more acidized to increase the intensity of acid sites as the content of subacid sulfate ions($NH_2SO_4$) in the rutile phase increases. The anatase/rutile(7%/93%) SCR had the smallest width of de-NOx performance drop according to thermal aging, and had strong durability against thermal aging.

광검출기용 다결정 실리콘 박막의 전도특성 분석을 통한 결정립계의 모형화 (Modelling of Grain Boundary in Polysilicon Film for Photodetector Through Current-Voltage Analysis)

  • 이재성
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.255-262
    • /
    • 2020
  • Grain boundaries play a major role in determining device performance, particularly of polysilicon-based photodetectors. Through the post-annealing of as-deposited polysilicon and then, the analysis of electric behavior for a metal-polysilicon-metal (MSM) photodetector, we were able to identify the influence of grain boundaries. A modified model of polysilicon grain boundaries in the MSM structure is presented, which uses a crystalline-interfacial layer-SiOx layer- interfacial layer-crystalline system that is similar to the Si-SiO2 system in MOS device. Hydrogen passivation was achieved through a hydrogen ion implantation process and was used to passivate the defects at both interfacial layers. The thin SiOx layer at the grain boundary can enhance the photosensitivity of an MSM photodetector by decreasing the dark current and increasing the light absorption.

Reliability analysis on fatigue Strength for Certification of Aircraft Composite Structures

  • Choi, Cheong Ho;Lee, Doo Jin;Jo, Jae Hyun;Bae, Sung Hwan;Lee, Myung Jik;Lee, Jong Ho
    • 항공우주시스템공학회지
    • /
    • 제15권2호
    • /
    • pp.16-25
    • /
    • 2021
  • Reliability of fatigue strength on Aircraft Composites(GFRP) Structures was assessed in this paper. Fatigue strength of GFRP was used through the existing fatigue test data with Monte Carlo method. The Sa-Nf curve of composites fatigue strength was assumed as normal distribution and reliability was analyzed using SSIT model. Fatigue stress was designed IAW ASTM F3114-15 with special safety factor of Ssf=1.2~2.0. Reliability was calculated by analytic method and FORM. Sensitivity for the effect of mean and standard deviation of fatigue strength as well as fatigue stability was evaluated. This result can be usefully applied to reliability and fatigue design for composite structures of light weight aircraft.

비상발전기용 PM/NOX 저감장치의 유동특성 연구 (Flow Analysis of PM/NOX Reduction System for Emergency Generator)

  • 방효원;박기영;이성욱
    • 한국분무공학회지
    • /
    • 제26권4호
    • /
    • pp.163-170
    • /
    • 2021
  • Emergency generators normally use diesel engines. The generators need to conduct weekly no-load operation inspections to ensure stable performance at emergency situations. In particular, the generators with large diesel engines mainly use rectangle type filter substrates. In order to minimize hazardous emissions generated by generators, optimizing the reduction efficiency through CFD analysis of flow characteristics of PM/NOX reduction system is important. In this study, we analyzed internal flow by CFD, which is difficult to confirm by experimental method. The main factors in our numerical study are the changes of flow uniformity and back pressure. Therefore, changes in flow characteristics were studied according to urea injector locations, selective catalyst reduction (SCR) diffuser angle, and filter porosity.

Cutting Technique for Biodegradable Rope using a CW CO2 Laser with TEM00 mode

  • Lee, Dong-Gil;Kim, Seong-Hun;Park, Seong-Wook;Yang, Yong-Su;Xu, Guo-Cheng
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.576-581
    • /
    • 2012
  • A 23 W continuous wavelength $CO_2$ laser system exited by a high-frequency LCC resonant converter is adapted to cut a biodegradable rope fabricated with polybutylene succinate. As the biodegradable rope consists of three twisted strands, the thickness changes relative to the position of the laser beam and we thus propose a method to determine exact cutting depth. In order to obtain the parameters related to the rope cutting, the experimental and theoretical cutting depths are compared and analyzed for a range of laser heat sources. The melted thickness and groove width of the cut biodegradable rope are also examined. The proposed theoretical cutting depth depends on the incident power and target velocity ratio. From these experimental results, the biodegradable rope with a diameter of 22 mm can be cut with a heat source of 50 J/cm resulting in a melted thickness of 1.96 mm and a groove width of 0.65 mm. The laser system is shown to be perfect tool for the processing of biodegradable rope without the occurrence of raveling.

태양광/풍력 복합발전의 보조 전력발생장치 개발에 대한 연구 (A Study on the Sub Power Generator for Photovoltaic/Wind Hybrid System)

  • 박세준;윤필현;임중열;이정일;차인수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 추계학술대회 논문집
    • /
    • pp.247-251
    • /
    • 2003
  • The developments of the hybrid energy are necessary since the future alternative energies that have no pollution and no limitation are restricted. Currently power generation system of MW scale has been developed. However, even photovoltaic system cannot always generate stable output with ever-changing weather condition. In this paper, sub power generator for hybrid system(photovoltaic 500[W], wind power generation 400[W]) was suggested. Sub power Generator that uses elastic energy of spiral spring to photovoltaic system was also added for the present system. In an experiment, when output of photovoltaic system gets lower than 24[V] (charging voltage), power was continuously supplied to load through the inverter by charging energy obtained from generating rotary energy of spiral spring operates In DC generator. Also, control algorithm of sub power generator is used genetic algorithm(GA).

  • PDF

건축설비시설의 갱신을 위한 최적 대체안 선정모델 개발에 관한 연구 (A Study on the Development of Optimal Alternative Selection Model to Renew Building Equipments System)

  • 윤동원;이정재;정광섭;한화택;정순성
    • 설비공학논문집
    • /
    • 제12권10호
    • /
    • pp.950-961
    • /
    • 2000
  • The objective of this study is to develop optimal alternative selection model for renewing building equipments system. Cost Breakdown Structure of LCC in HVAC systems are deduced from resonable data and factors. As for Cost Breakdown Structure of LCC in HVAC system, pertinent level, title, CBS number, and block number are determined efficiently. Especially, in addition to current cost factor, it is possible to make Cost Breakdown Structure using present worth method more clear. A model of POWER LCC ver 1.0 used to analyze primary cooling system, heating system, and air conditioning system are POWER LCC ver 1.0_/sub SYSTEM/ : C1+ C2- C3+ C4+ C5+ C6+ C7±C8+ C9- C10/sub -1/+ C10/sub -2/+ C10/sub -3/, and is implemented with consideration of Cost Breakdown Structure and their summation using present-worth method. It is programmed with one of scientific languages, MATLAB 5.3.

  • PDF

다양한 운전조건에서 이젝터를 적용한 CO2 냉동기의 성능비교 (Comparison of Performance in CO2 Cooling System with an Ejector for Various Operating Conditions)

  • 강변;조홍현
    • 설비공학논문집
    • /
    • 제23권7호
    • /
    • pp.505-512
    • /
    • 2011
  • Recently, many researchers have analyzed the performance of the transcritical $CO_2$ refrigeration cycle in order to identify opportunities to improve the system energy efficiency. The reduction of the expansion process losses is one of the key issues to improve the efficiency of the transcritical $CO_2$ refrigeration cycle. In this study, the analytical study on the performance characteristics of $CO_2$ cycle with an ejector carried out with a variation of outdoor temperature, gascooler inlet air velocity, evaporator inlet air velocity, and evaporator inlet air temperature. As a result, the system performance could be improved over 85% by using an ejector for various operating condition because of the reduction of compressor work. Moreover, the cooling capacity increased about 18% for variable outdoor condition. Therefore, the high performance of an ejector system could be maintained for wide operating conditions and system reliability could be improved compared to that of a basic system.

자동차 엔진 냉각시스템의 컴퓨터 시뮬레이션 (Computer Simulation of an Automotive Engine Cooling System)

  • 원성필;윤종갑
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.58-67
    • /
    • 2003
  • An automotive engine cooling system is closely related with overall engine performances, such as reduction of fuel consumption, decrease of air pollution, and increase of engine life. Because of complex reaction between each component, the direct experiment, using a vehicle, takes high cost, long time, and slow response to the system change. Therefore, a computer simulation would provide the designer with an inexpensive and effective tool for design, development, and optimization of the engine cooling system over a wide range of operating conditions. In this work, it has been predicted the thermal performance of the engine cooling system in cases of stationary mode, constant speed mode, and city-drive mode by mathematical modelling of each component and numerical analysis. The components are engine, radiator, heater, thermostat, water pump, and cooling fans. Since the engine model is the most important, that is divided into eight sub-sections. The volume mean temperature of eight sub-sections are simultaneously calculated at a time. For detail calculation, the radiator and heater are also divided into many sub-sections like control volumes in finite difference method. Each sub-section is assumed to consist of three parts, coolant, tube with fin, and air. Hence it has been developed the simulation program that can be used in case of design and system configuration changes. The overall performance results obtained by the program were desirable and the time-traced tendencies of the results agreed fairly well with those of actual situations.

자동차 차체부품 CO2용접설비 전수검사용 비전시스템 개발 (Development of a Vision System for the Complete Inspection of CO2 Welding Equipment of Automotive Body Parts)

  • 김주영;김민규
    • 센서학회지
    • /
    • 제33권3호
    • /
    • pp.179-184
    • /
    • 2024
  • In the car industry, welding is a fundamental linking technique used for joining components, such as steel, molds, and automobile parts. However, accurate inspection is required to test the reliability of the welding components. In this study, we investigate the detection of weld beads using 2D image processing in an automatic recognition system. The sample image is obtained using a 2D vision camera embedded in a lighting system, from where a portion of the bead is successfully extracted after image processing. In this process, the soot removal algorithm plays an important role in accurate weld bead detection, and adopts adaptive local gamma correction and gray color coordinates. Using this automatic recognition system, geometric parameters of the weld bead, such as its length, width, angle, and defect size can also be defined. Finally, on comparing the obtained data with the industrial standards, we can determine whether the weld bead is at an acceptable level or not.