• Title/Summary/Keyword: Styrene Oxide

Search Result 108, Processing Time 0.03 seconds

Enantioselective Reduction of Racemic Three-Membered Heterocyclic Compounds. 3. Reaction of Epoxides with B-Isopinocampheyl-9-borabicycolo[3.3.1]nonane-Potassium Hydride and Potassium B-Isopinocampheyl-9 boratabicyclo[3.3.1]nonane Systems$^1$

  • Cha, Jin-Soon;Lee, Kwang-Woo;Yoon, Nung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.421-423
    • /
    • 1987
  • The chiral B-isopinocampheyl-9-borabicyclo[3.3.1]nonane-potassium hydride (IPC-9-BBN-KH) and potassium B-isopinocampheyl-9-boratabicyclo[3.3.1]nonane (K IPC-9-BBNH) systems were applied to the enantioselective reduction of representative racemic epoxides, namely 1,2-epoxybutane, 1,2-epoxyoctane, 3,3-dimethyl-1,2-epoxybutane and styrene oxide. In the case of IPC-9-BBN-KH system, the optical yields are in the range of 8.3-37.4$\%$ ee. However, the system of K IPC-9-BBNH provides significantly lower optical yields, showing 7-22.5$\%$ ee. These results strongly suggest that the enantioselective coordination of chiral organoborane to the epoxy oxygen of racemic epoxides plays an important role in this resolution.

Effect of Diffusion on the Adhesion Behavior of Polymer Coated Carbon Fibers with Vinyl Ester Resins (계면확산에 의한 고분자 코팅된 탄소섬유의 계면접착력 변화 연구)

  • T. H. Yoon;H. M. Kang
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.32-35
    • /
    • 1999
  • Poly(arylene ether phosphin oxide) (PEPO), Udel$^{\circledR}$ P-1700, Ultem$^{\circledR}$ 1000. poly(hydroxy ether) (PHE), carboxy modified poly(hydroxy ether)(C-PHE) and poly(hydroxy ether ethanol amine) (PHEA) were utilized for a coating of carbon fibers. Interfacial shear strength(IFSS) of polymers to carbon fibers was also evaluated in order to understand the adhesion mechanism. IFSS was measured via micro-droplet tests, and failure surfaces were analyzed by SEM. Diffusion between polymer and vinyl ester resin was investigated as a function of styrene content; 33. 40 or 50wt.% and the solubility parameters of polymers were calculated. The results were correlated to the interfacial shear strength. The highly enhanced interfacial shear strength (IFSS) was obtained with PEPO coating, and marginally improved IFSS with PHE, Udel$^{\circledR}$ and C-PHE coatings, but no improvement with PHEA and Ultem$^{\circledR}$ coatings.

  • PDF

Effect of Lithium Chloride on the Borane Reduction of Organic Compound (보란-염화리튬에 의한 유기화합물의 환원반응)

  • Nung Min Yun;Jin Soon Cha
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 1978
  • The effect of lithium chloride on the borane reduction of organic compounds was studied for three ketones, seven acid derivatives, three epoxides and cyclohexene in tetrahydrofuran at $0^{\circ}$. When compared with borane itself, borane-lithium chloride system enhanced the rates of reductions markedly of 2-heptanone, acetophenone, benzoyl chloride, phthalic anhydride, and three epoxides, whereas the reductions of benzophenone, four esters and cyclohexene showed little or no effect. $BH_3$-LiCl (1 : 0.1) reduced styrene oxide in 2 hr at $0^{\circ}$ to give 94.2 % yield of alcohols, 1-to 2-phenylethanol ratio being 60.8 to 39.2. And in the reduction of cyclohexene oxide, $BH_3$-LiCl (1 : 0.1) gave a quantitative yield of cyclohexanol in 2 hr at $0{\circ}$, however $BH_3$-LiCl (1 : 1) gave 58 % cyclohexanol and 42 % 2-chlorocyclohexanol. In the reduction of cyclohexene oxide, lithium nitrate showed no rate enhancement even when the salt was added in large excess. A formation of lithium chloroborohydride in the$BH_3$-LiCl system is suggested.

  • PDF

Fabrication and Characterization of Polymer Light Emitting Diodes by Using PFO/PFO:MEH-PPV Double Emitting Layer (PFO/PFO:MEH-PPV 이중 발광층을 이용한 고분자 유기발광다이오드의 제작과 특성 연구)

  • Chang, Young-Chul;Shin, Sang-Baie
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.23-28
    • /
    • 2008
  • To improve the external quantum efficiency by means of the optimization of the polymer light emitting diodes(PLEDs) structure, the PLED with ITO/PEDOT:PSS/(PFO)/PFO:MEH-PPV/LiF/Al structure were fabricated and investigated the electrical and optical properties for the prepared devices. ITO(indium tin oxide) and PEDOT:PSS [poly (3,4-ethylenedioxythiophene): poly(styrene sulfolnate)] were used as transparent anode film and hole transport materials, respectively. PFO[poly(9,9-dioctylfluorene)] and MEHPPV[poly(2-methoxy-5(2-ethylhe xoxy)-1,4-phenylenevinyle)] were used as the light emitting host and dopant materials. The doping concentration of MEH-PPV was 9wt% with thickness of about $400{\AA}$. We investigated the dependence of the PFO thickness ranging from $200{\AA}$ to $300{\AA}$ on the electrical, optical properties of PLEDs. Among prepared PLED devices with different PFO thicknesses, the highest value of the luminance was obtained for the PLED device with $250{\AA}$ in thickness. As a result, the current density and luminance ware found to be about $400mA/cm^2$ and $1500cd/m^2$ at 13V, respectively. In addition, the luminance and current efficiency of PLED device with double emitting layer (PFO/PFO:MEH-PPV) were improved about 3 times compared with the one with single emitting layer (PFO:MEH-PPV).

  • PDF

Preparation and Characterization of White Polymer Light Emitting Diodes using PFO:MEH-PPV (PFO:MEH-PPV를 이용한 White PLED의 제작과 특성평가)

  • Shin, Sang-Baie;Gong, Su-Choel;Park, Hyung-Ho;Jeon, Hyeong-Tag;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.59-64
    • /
    • 2008
  • In this paper, white polymer light emitting diodes(WPLEDs) were fabricated and investigated the electrical and optical properties for the prepared devices. ITO(indium tin oxide) and PEDOT:PSS [poly(3,4-ethylenedioxythiophene):poly(styrene sulfolnate)] as anode and hole injection materials, PFO [poly(9,9-dioctylfluorene)] and MEH-PPV [poly(2-methoxy-5(2-ethylhe xoxy)-1,4-phenylenevinyle)] were used as the light emitting host and guest materials, respectively. The LiF(lithium flouride) and Al(aluminum) were used electron injection materials and cathode materials. Finally, the WPLED with structure of ITO/PEDOT:PSS/PFO:MEH-PPV/LiF/Al was fabricated. The prepared WPLED showed white emission with CIE coordinates of (x=0.36, y=0.35) at the applied voltage of 9V. The maximum current density and luminance were about $740mA/cm^2\;and\;900cd/m^2$ at 13V, respectively. And the maximum current efficiency was 0.37 cd/A at $200cd/m^2$ in luminance.

  • PDF

Preparation of Polymer Light Emitting Diodes with PFO-poss Organic Emission Layer on ITO/Glass Substrates (ITO/Glass 기판위에 PFO-poss 유기 발광층을 가지는 고분자 발광다이오드의 제작)

  • Yoo, Jae-Hyouk;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.51-56
    • /
    • 2006
  • Polymer light emitting diodes (PLEDs) with ITO/EDOT:PSS/PVK/PFO-poss/LiF/Al structures were prepared by the spin coating method on ITO(indium tin oxide)/glass substrates. PFO-poss[Poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with poss] was used as light emitting polymer. PVK[poly(N-vinyl carbazole)] and PEDOT:PSS [poly(3,4-ethylenedioxythiophene):poly(styrene sulfolnate)] polymers were used as the hole injection and transport materials. The effect of PFO-poss concentration and the heating temperatures on the electrical and optical properties of the devices were investigated. At the same concentration of PFO-poss solution, the current density and luminance of PLED device tend to increase as the annealing temperature increase from $100^{\circ}C$ to $200^{\circ}C$. The maximum luminance was found to be about 958 cd/m2 at 13V for the PLED device with 1.0 wt% PFO-poss at the annealing temperature of $200^{\circ}C$. In addition, the PLED device showed bluish white emission through the strong greenish peak with 523 nm in wavelength. As the concentration of PFO-poss increase from 0.5 wt% to 1.0 wt% and temperature of PLEDs increase from $100^{\circ}C$ to $200^{\circ}C$, the emission color tend to be shifted from blue with (x, y) = (0.17,0.14) to bluish white with (x, y) : (0.29,0.41) in CIE color coordinate.

  • PDF

ITO/PEDOT:PSS/PVK/PFO-poss/LiF/Al의 다층구조를 갖는 유기 발광다이오드의 열처리 효과

  • Yu, Jae-Hyeok;Gong, Su-Cheol;Sin, Sang-Bae;Jang, Ji-Geun;Jang, Ho-Jeong;Jang, Yeong-Cheol
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.154-157
    • /
    • 2006
  • ITO(indium tin oxide)/glass 기판 위에 PEDOT:PSS[poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)]와 PVK[poly(N-vinyl carbazole)] 고분자 물질을 정공 주입 및 수송층으로, 발광층으로 PFO-poss[Poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with POSS]를 사용하여 스핀코팅법과 열 증착법으로 ITO/PEDOT:PSS/PVK/PFO-poss/LiF/Al 구조의 고분자 발광 다이오드를 제작하였다. PFO-poss 유기발광 층의 열처리 조건 (온도, 시간)이 PLED 소자의 전기적, 광학적 특성에 미치는 영향을 조사하였다. 1 wt%의 농도를 갖는 PFO-poss 유기물 발광 층을 200C 온도로 3시간 열처리 할 경우 11 V 인가전압에서 $1497\;cd/m^2$의 최대 휘도를 나타내었다. 동일온도에서 열처리 시간을 1시간에서 3시간으로 증가시킬 경우 휘도의 증가와 함께 발광 개시온도가 감소하는 경향을 보여주었다. 또한 열처리 온도와 시간을 증가시킬 경우 제2발광피크인 excimer 피크가 크게 나타났으며 청색에서 황색 발광 쪽으로 천이되는 경향을 나타내었다.

  • PDF

Development of Soluble Epoxide Hydrolase Inhibitor Screening Methods for Discovery of Drug Candidate in Cardiovascular Diseases (심혈관계 질환 치료제 후보물질 발굴을 위한 Soluble Epoxide Hydrolase 억제평가 방법 개발)

  • Lee, Gwan-Ho;Kim, Bong-Hee;Kim, Sang-Kyum
    • YAKHAK HOEJI
    • /
    • v.56 no.1
    • /
    • pp.42-47
    • /
    • 2012
  • Soluble epoxide hydrolase (sEH) is a metabolic regulator of epoxyeicosatrienoic acids (EETs). EETs have many beneficial effects, vasodilation, anti-diabetes, anti-inflammation, cardiovascular protection, renal protection. Therefore, selective sEH inhibitors have a potential for treating these diseases. In the present study, screening methods for sEH inhibitors using PHOME ((3-phenyl-oxiranyl)-acetic acid cyano-(6-methoxynaphthalen-2-yl)-methyl ester) and 14-15-EET as substrates were established. To determine selectivity, microsomal epoxide hydrolase (mEH) inhibition assay was also developed using styrene oxide as a substrate of microsomal epoxide hydrolase. Our results obtained from 12-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]-dodecanoic acid (AUDA) used as a positive sEH inhibitor and valpromide used as a positive mEH inhibitor showed that these methods are useful for discovery of drug candidates.

Reaction of Lithium Gallium Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Choe, Jeong Hun;Yun, Mun Yeong;Yun, Jong Hun;Jeong, Dong Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.416-421
    • /
    • 1995
  • The approximate rates and stoichiometry of the reaction of excess lithium gallium hydride with selected organic compounds containing representative functional groups were examined under the standard conditions (diethyl ether, 0 $^{\circ}C)$ in order to compare its reducing characteristics with lithium aluminum hydride and lithium borohydride previously reported, and enlarge the scope of its applicability as a reducing agent. Alcohols, phenol, and amines evolve hydrogen rapidly and quantitatively. However lithium gallium hydride reacts with only one active hydrogen of primary amine. Aldehydes and ketones of diverse structure are rapidly reduced to the corresponding alcohols. Conjugated aldehyde and ketone such as cinnamaldehyde and methyl vinyl ketone are rapidly reduced to the corresponding saturated alcohols. p-Benzoquinone is mainly reduces to hydroquinone. Caproic acid and benzoic acid liberate hydrogen rapidly and quantitatively, but reduction proceeds slowly. The acid chlorides and esters tested are all rapidly reduced to the corresponding alcohols. Alkyl halides and epoxides are reduced rapidly with an uptake of 1 equiv of hydride. Styrene oxide is reduced to give 1-phenylethanol quantitatively. Primary amides are reduced slowly. Benzonitrile consumes 2.0 equiv of hydride rapidly, whereas capronitrile is reduced slowly. Nitro compounds consumed 2.9 equiv of hydride, of which 1.9 equiv is for reduction, whereas azobenzene, and azoxybenzene are inert toward this reagent. Cyclohexanone oxime is reduced consuming 2.0 equiv of hydride for reduction at a moderate rate. Pyridine is inert toward this reagent. Disulfides and sulfoxides are reduced slowly, whereas sulfide, sulfone, and sulfonate are inert under these reaction conditions. Sulfonic acid evolves 1 equiv of hydrogen instantly, but reduction is not proceeded.

MEH-PPV 농도에 따른 유기발광다이오드의 전기$\centerdot$ 광학적 특성

  • 공수철;백인재;유재혁;임현승;장호정;장영철
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.142-146
    • /
    • 2005
  • 패턴화된 ITO (indium tin oxide)/Glass 기판 위에 정공수송층인 PEDOT:PSS [poly(3,4-othylenedioxythiophene):poly(styrene sulfolnate)]와 발광층인 MEH-PPV [poly(2-methoxy-5-(2-ethyhexoxy)-1,4phenylenvinylene)]를 사용하여 ITO/PEDOT:PSS/MEH-PPV/AI 구조를 갖는 고분자 유기 발광다이오드 (polymer light emitting diode: PLED)를 제작하였다. PLED 제작시 MEH-PPV 의 농도를 ($0.1\;wt\%\;{\~}\;0.9\;wt\%$) 변수로 하여 박막의 표면 거칠기와 박막 층의 마찰재수(friction coefficient) 측정을 통하여 농도에 따른 특성 변화를 조사하였다. MEH-PP 의 농도를 $0.1\;wt\%$ 에서 $0.9\;wt\%$ 로 증가함에 따라 발광 층의 RMS (root mean square)같은 1.72 nm 에서 1.00 nm 로 감소하여 거칠기가 개선되는 경향을 보여 주었다. 그러나 박막간의 마찰계수는 0.048 에서 0.035 로 감소하여 박막간의 접합상태가 나빠지는 현상을 나타내었다. 소자의 전기, 광학적 특성의 경우 MEH-PPV 농도가 $0.5\;{\~}\;0.9\;wt\%$ 범위에서 약 0.35 mA (at 9V)의 전류밀도를 나타내었으며, 최대 휘도는 $0.5\;wt\%$ 농도에서 $409\;cd/m^2$의 값을 나타내었다.

  • PDF