• Title/Summary/Keyword: Sturm-Liouville problem

Search Result 19, Processing Time 0.023 seconds

SOLUTIONS OF STURM-LIOUVILLE TYPE MULTI-POINT BOUNDARY VALUE PROBLEMS FOR HIGHER-ORDER DIFFERENTIAL EQUATIONS

  • Liu, Yuji
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.167-182
    • /
    • 2007
  • The existence of solutions of the following multi-point boundary value problem $${x^{(n)}(t)=f(t,\;x(t),\;x'(t),{\cdots}, x^{(n-2)}(t))+r(t),\;0 is studied. Sufficient conditions for the existence of at least one solution of BVP(*) are established. It is of interest that the growth conditions imposed on f are allowed to be super-linear (the degrees of phases variables are allowed to be greater than 1 if it is a polynomial). The results are different from known ones since we don't apply the Green's functions of the corresponding problem and the method to obtain a priori bounds of solutions are different enough from known ones. Examples that can not be solved by known results are given to illustrate our theorems.

SOLUTIONS OF STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS FOR HIGHER-ORDER DIFFERENTIAL EQUATIONS

  • Liu, Yuji
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.231-243
    • /
    • 2007
  • The existence of solutions of a class of two-point boundary value problems for higher order differential equations is studied. Sufficient conditions for the existence of at least one solution are established. It is of interest that the nonlinearity f in the equation depends on all lower derivatives, and the growth conditions imposed on f are allowed to be super-linear (the degrees of phases variables are allowed to be greater than 1 if it is a polynomial). The results are different from known ones since we don't apply the Green's functions of the corresponding problem and the method to obtain a priori bound of solutions are different enough from known ones. Examples that can not be solved by known results are given to illustrate our theorems.

SOME SPECTRAL AND SCATTERING PROPERTIES OF GENERALIZED EIGENPARAMETER DEPENDENT DISCRETE TRANSMISSION STURM-LIOUVILLE EQUATION

  • Guher Gulcehre Ozbey;Guler Basak Oznur;Yelda Aygar ;Turhan Koprubasi
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.457-470
    • /
    • 2023
  • In this study, we set a boundary value problem (BVP) consisting of a discrete Sturm-Liouville equation with transmission condition and boundary conditions depending on generalized eigenvalue parameter. Discussing the Jost and scattering solutions of this BVP, we present scattering function and find some properties of this function. Furthermore, we obtain resolvent operator, continuous and discrete spectrum of this problem and we give an valuable asymptotic equation to get the properties of eigenvalues. Finally, we give an example to compare our results with other studies.

INVERSE PROBLEM FOR INTERIOR SPECTRAL DATA OF THE DIRAC OPERATOR

  • Mochizuki, Kiyoshi;Trooshin, Igor
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.437-443
    • /
    • 2001
  • In this paper the inverse problems for the Dirac Operator are studied. A set of values of eigenfunctions in some internal point and spectrum are taken as a data. Uniqueness theorems are obtained. The approach that was used in the investigation of inverse problems for interior spectral data of the Sturm-Liouville operator is employed.

  • PDF

Reassessment of the Mild Slope Equations (완경사 파랑식들의 재평가)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.521-532
    • /
    • 2007
  • In the derivation of mild slope equation, a Galerkin method is used to rigorously form the Sturm-Liouville problem of depth dependent functions. By use of the canonical transformation to the dependent variable of the equation a reduced Helmholtz equation is obtained which exclusively consists of terms proportional to wave number, bottom slope and bottom curvature. Through numerical studies the behavior of terms is shown to play an important role in wave transformations over variable depth and it is proved that their relative magnitudes limit applicability of the mild slope equation(MSE) against the modified mild slope equation(MMSE).

NUMERICAL EXPERIMENTS OF THE LEGENDRE POLYNOMIAL BY GENERALIZED DIFFERENTIAL TRANSFORM METHOD FOR SOLVING THE LAPLACE EQUATION

  • Amoupour, Ebrahim;Toroqi, Elyas Arsanjani;Najafi, Hashem Saberi
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.639-650
    • /
    • 2018
  • Finding a solution for the Legendre equation is difficult. Especially if it is as a part of the Laplace equation solving in the electric fields. In this paper, first a problem of the generalized differential transform method (GDTM) is solved by the Sturm-Liouville equation, then the Legendre equation is solved by using it. To continue, the approximate solution is compared with the nth-degree Legendre polynomial for obtaining the inner and outer potential of a sphere. This approximate is more accurate than the previous solutions, and is closer to an ideal potential in the intervals.

An Analytical Calculation of the Transport of the Solute Dumped in a Homogeneous Open Sea with Mean and Oscillatory Flows

  • Lee Ho Jin;Jung Kyung Tae
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.2
    • /
    • pp.90-95
    • /
    • 2004
  • An analytical model for predicting the convection-diffusion of solute dumped in a homogeneous open sea of constant water depth has been developed in a time-integral form. The model incorporates spatially uniform, uni-directional, mean and oscillatory currents for horizontal convection, the settling velocity for the vertical convection, and the anisotropic turbulent diffusion. Two transformations were introduced to reduce the convection-diffusion equation to the Fickian type diffusion equation, and then the Galerkin method was then applied via the expansion of eigenfunctions over the water column derived from the Sturm-Liouville problem. A series of calculations has been performed to demonstrate the applicability of the model.

A Three-dimensional Spectral Model for the Computation of Wind-induced Flows in a Homogeneous Shelf Sea (취송류 재현을 위한 3차원 스펙트랄모형 개발)

  • So, Jae-Kwi;Jung, Kyung-Tae;Lee, Kwang-Soo;Seung, Young-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.2
    • /
    • pp.91-107
    • /
    • 1992
  • A numerical formulation is developed to solve the linear three-dimensional hydrodynamic equations which describes wind induced flows in a homogeneous shelf sea. The hydmdynamic equations are at the outset separated into two systems. namely, an equation containing the gradient of sea surface elevation and the mean flow (external mode) and an equation describing the deviation from the mean flow (internal mode). The Galerkin method is then applied to the internal mode equation. The eigenvalues are determined from the eigenvalue problem involving the vertical eddy viscosity subject to a homogeneous boundary condition at the surface and a sheared boundary condition at the sea bed. The model is tested in a one-dimensional channel with uniform depth under a steady, uniform wind. The analytical velocity profile by Cooper and Pearce (1977) using a constant vertical eddy viscosity in channels of infinite and finite length is chosen as a benchmark solution. The model is also tested in a homogeneous, rectangular basin with constant depth under a steady, uniform wind field (the Heaps' Basin of the North Sea scale).

  • PDF