• Title/Summary/Keyword: Structure-Exciter Interaction

Search Result 2, Processing Time 0.014 seconds

Analysis on the Measured Natural Frequencies Due to the Structure-Exciter Interaction (구조물-가진기 상호작용에 의한 공진주파수 변동에 대한 해석)

  • Han, Sang-Bo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2108-2117
    • /
    • 1996
  • The purpose of this paper is to investigate the influence of the exciter attached for the measurement of natural frequencies when extracting the frequency response functions of the test structure in experimental modal analysis. The procedure is first to model the attached exciter as an additional degree of freedom system and next to verify the suggested model by experimentally extracting the natural frequencies of the test structure with various values of exciter mass, stinger stiffness and attachment position of the exciter on the test structure. It is concluded that as additional degree of freedom system which includes the natural frequency of the exciter itself and axial stiffness of stinger should be considered to quantatively define the coupling effects of structure-exciter interaction on the measured natural frequencies. It is not the mass of the exciter itself but the coupling effect of the additional degree of freedom mass-spring system consisting of exciter body and armature coil that characterizes the natural frequency deviation. Therefore, when the natural frequency of this additional mass-spring system is outside of the test frequency range, the coupling effect of structure-exciter interaction can be minimized.

A Study on the MDAS-DR Antenna for Shaping Flat-Topped Radiation Pattern (구형 빔 패턴 형성을 위한 MDAS-DR 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.323-333
    • /
    • 2007
  • In this paper, a new MDAS-DR antenna structure designed to efficiently shape a flat-topped radiation pattern is proposed. The antenna structure is composed of a stacked micro-strip patch exciter and a multi-layered disk array structure(MDAS) surrounded by a dielectric ring. The MDAS, which was supplied by a stacked microstrip patch exciter with radiating power, can form a flat-topped radiation pattern in a far field by a mutual interaction with the surrounding dielectric ring. Therefore, the design parameters of the dielectric ring and the MDAS structure are important design parameters for shaping a flat-topped radiation pattern. The proposed antenna used twelve multi-layered disk array elements and a Teflon material with a dielectric constant of 2.05. An antenna operated at 10 GHz$(9.6\sim10.4\;GHz)$ was designed in order to verify the effectiveness of the proposed antenna structure. The commercial simulator of CST Microwave $Studio^{TM}$, which was adapted to a 3-D antenna structure analysis, was used for the simulation. The antenna breadboard was also fabricated and its electrical performance was measured in an anechoic antenna chamber. The measured results of the antenna breadboard with a flat-topped radiation pattern were found to be in good agreement with the simulated one. The MDAS-DR antenna gain measured at 10 GHz was 11.18 dBi, and the MDAS-DR antenna was capable of shaping a good flat-topped radiation pattern with a beam-width of about $40^{\circ}$, at least within a fractional bandwidth of 8.0 %.