• Title/Summary/Keyword: Structure-Born Noise

Search Result 22, Processing Time 0.025 seconds

The Study for Vibro-acoustic Noise Analysis in the Fuselage of Regional Turboprop Airplane (중형항공기 동체 소음해석 기법 연구)

  • Park, Illkyung;Kim, Sungjoon;Jung, Jinduck
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.3
    • /
    • pp.44-50
    • /
    • 2012
  • The noise reduction is important one of considerations in the process of a civil aircraft development program. External noise sources are classified into an air-born source and a structure-born source. Among these noise sources, the most affected noise source into a cabin is the air-born noise source from an engine or propeller. The external noise is transmitted into the cabin through the fuselage structure of airplane which are composed of an fuselage structure, an interior trim panel and an acoustic insulation layer between an fuselage structure and an interior trim panel. Therefore, appropriate fuselage structure and acoustic insulation layer is very important to reduce the internal noise level. In this paper, the vibro-acoustic coupled analysis of the cabin noise of the 80~90 seats regional turboprop aircraft is carried out to validate the acoustic analysis method using Direct BEM and FEM. The sound pressure level onto the fuselage skin is acquired by fan-source noise analysis using BEM, and which sound pressure is used as acoustic noise source in vibro-acoustic noise analysis for cabin noise analysis using FEM.

Improvement of Interior Booming Noise in the Vehicle Using the Structural Dynamic Modification (구조물 동특성 변경을 이용한 실내 부밍 소음 개선)

  • Kim, Young-Ha;Lee, Jae-Woong;Kim, Sung-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.354-359
    • /
    • 2012
  • Improvement of structure-borne noises in the vehicle compartments has been one of the primary concerns in the development of vehicles. The booming is an annoying low frequency interior noise and vibration in vehicle. But it is difficult to reduce the structure-born booming noise in traditional method - trial and error within the shorten development schedule. So in present, the structure dynamic modification (SDM) method helpful to predict the effect of the local mass, stiffness, and damping is introduced. So in order to reduce the interior booming noise, the SDM was performed, and verified with modal test result. It was shown that the interior booming noise was reduced as predicted.

  • PDF

Study on Noise Reduction of DLP Projector (DLP 프로젝터의 소음 저감 연구)

  • 박대경;장동섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.132-137
    • /
    • 2003
  • For the evaluation of acoustic noise of a DLP projector, vibration and sound characteristics of a DLP projector were studied. The acoustic noise of DLP projector could be classified into three categories, that is, the direct noise from a body of rotation, the air-bone noise generated from turbulence or vortex occurred during cooling process and the structural born noise produced by vibrating elements. Cooling fans and color filter wheel which rotates at 9000 rpm are main causes of acoustic noise induced in DLP projector. Since the structure of an optical module in a DLP projector can be excited by the excessive vibration of a color filter wheel, the structural design for anti-vibration should be considered. To make a reduction of overall acoustic noise, the anti-vibration design and the enclosing structure have been studied and applied to a color filter wheel.

  • PDF

Study on Noise Reduction of DLP Front Home Theater Projector (가정용 DLP 프로젝터의 소음 저감에 관한 연구)

  • Jang Dong Seob;Park Chul Min;Park Dae Kyong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.861-867
    • /
    • 2004
  • For the evaluation of acoustic noise of a DLP projector, vibration and sound characteristics of a DLP projector were studied. The acoustic noise of DLP projector could be classified into three categories, that is, the direct noise from a body of rotation, the air-bone noise generated from turbulence or vortex occurred during cooling process and the structural born noise produced by vibrating elements. Cooling fans and color filter wheel which rotates at 9000 rpm are main causes of acoustic noise induced in DLP projector. Since the structure of an optical module in a DLP projector can be excited by the excessive vibration of a color filter wheel, the structural design for anti-vibration should be considered. To make a reduction of overall acoustic noise, the anti-vibration design and the enclosing structure have been studied and applied to a color filter wheel.

Design Optimization of Structure-born Noise of Automobile (자동차 소음/진동의 최적 설계)

  • 왕세명;최경국;하리쿨카니
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.104-109
    • /
    • 1996
  • Continuum element sensitivity analysis (CONTESA) and system optimization (SYSOPT) for Noise, Vibration, and Harshness (NVH) have been developed and applied to automobile structures for sizing, topology, and configuration design using Mindlin plate and Timoshenko beam theories. The topology optimization has been developed using the density approach, sequential linear programming, and the adjoint variable method. CONTESA has been tested using various vehicle models. Optimized vehicles using CONTESA and SYSOPT are manufactured to validate the simulation-based design methodology.

  • PDF

Identification of the Interior noise Generated by Car Axle and Modification of the Structural on Axle System for Noise Reduction (SUV 용 액슬의 소음원 규명 및 소음 저감을 위한 액슬의 구조변경에 관한 연구)

  • Lee, Ju-Young;Lee, Sang-Kwon;Jo, Yoon-Kyeong;Kim, Jong-Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.180-185
    • /
    • 2005
  • Gear whine noise of the axle and transmission is getting more important for reduction of vehicle noise, because major noise of vehicle was reduced. Therefore, in this paper, axle noise and vibration is measured, then the modal analysis and running modal analysis is applied for identification of axle gear whine noise. And To reduce axle noise, Various structural modifications are performed by using FEM and BEM techniques.

  • PDF

Identification of the Interior Noise Generated by SUV Axle and Modification of the Structural on Axle System for Noise Reduction (SUV용 액슬의 소음원 규명 및 소음 저감을 위한 액슬의 구조변경에 관한 연구)

  • Lee, Ju-Young;Jo, Yoon-Kyeong;Kim, Jong-Youn;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.582-592
    • /
    • 2006
  • This paper presents experimental and analytic methods to reduce interior noise generated by car axle. The test vehicle has a whine noise problem at passenger seats. In order to identify transfer path of interior axle noise, the vibration path analysis, the modal analysis and running modal analysis are systematically employed. By using these various methods, it has been founded that the interior noise generated by car axle was air borne noise. To reduce and predict axle noise, various structural modifications are performed by using FEM and BEM techniques, respectively. Through the modification of the axle structure, the air borne noise of the axle was reduced 3$\sim$4 dBA level.

A Study on the Evaluation of Noise Characteristics for Multi-purpose Dive Support Vessel (다목적 잠수 지원선의 소음해석 및 소음특성 검토)

  • Kwon, Jong-Hyun;Kim, Mun-Su;Cho, Dae-Seung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.43-46
    • /
    • 2011
  • The noise characteristics of multi-purpose dive support vessel show the different patterns such as types of noise sources, accommodation arrangement and etc due to its operation. Especially, the tunnel and retractable thruster for the dynamic positioning should be considered at the noise analysis. The floating floor is selected as the main measure of noise reduction and is constructed at the deck near the noise sources. In this paper, the noise analysis of dive support vessel is based on the estimation of noise sources and floating floor and SEA (Statistical Energy Analysis) is used for analysis of the air-born noise and structure-borne noise. The noise analysis of air conditioning system is also carried out and the noise results of cabin room are reviewed.

  • PDF

A Case Study on Inside Noise Reduction of Agricultural Tractor Cab(II) -Noise Reduction- (농용 트랙터의 안전캡 내부 소음 감소에 관한 연구(II) -소음 감소 효과-)

  • 유동호;김경욱;최창현
    • Journal of Biosystems Engineering
    • /
    • v.20 no.2
    • /
    • pp.127-132
    • /
    • 1995
  • In the first part of this paper, an analysis of the cab noise of a selected agricultural tractor was presented. In this study, using the results of the previous analysis, two passive noise control measures of the sound insulation and absorption were conducted to reduce the noise level inside the cab. These measures of noise control reduced the total noise level by 6.2㏈(A) at the operator position inside the cab. In order to further reduce the cab noise, particularly, of lower frequencies than 630Hz, stiffness and damping of the floor panel should be enforced. It was also suggested that a proper suspension for the cab mounting is necessary to reduce the level of structure-born noises.

  • PDF

Active Control of Road-Booming-Noise with Constraint Multiple Filtered-X LMS Algorithm

  • Oh, Shi-Hwan;Kim, Hyoun-Suk;Park, Young-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2E
    • /
    • pp.3-7
    • /
    • 2000
  • Vibration generated by the non-uniform road profile propagates though each tire and the suspension and finally generates structure born noise in the interior of the passenger vehicle. In this paper, the road-booming-noise which has strong correlation with the vibration signals measured at the suspension system was compensated. Active noise control of the road-booming-noise is rather difficult to achieve because of its non-stationary characteristics. CMFX LMS (Constraint Multiple Filtered-X Least Mean Square) algorithm, which can track non-stationary process rather well, is applied. Comprison of the proposed method and the conventional MFX LMS (Multiple Filtered-X Least Mean Square) algorithm is made through the hardware-in-the-loop simulation and the feasibility of the proposed method is demonstrated with the experiment.

  • PDF