• Title/Summary/Keyword: Structure safety

Search Result 4,468, Processing Time 0.029 seconds

A Study on Smart Ground Resistance Measurement Technology Based on Aduino (아두이노 기반 IT융합 스마트 대지저항 측정 기술 연구)

  • Kim, Hong Yong
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.684-693
    • /
    • 2021
  • Purpose: The purpose is to establish a safe facility environment from abnormal voltages such as lightning by developing a smart land resistance measuring device that can acquire real-time land resistance data using Arduino. Method: This paper studied design models and application cases by developing a land resistance acquisition and analysis system with Arduino and a power line communication (PLC) system. Some sites in the wind power generation complex in Gyeongsangnam-do were selected as test beds, and real-time land resistance data applied with new technologies were obtained. The electrode arrangement adopted a smart electrode arrangement using a combination of a Wenner four electrode arrangement and a Schlumberger electrode arrangement. Result: First, the characteristic of this technology is that the depth of smart multi-electrodes is organized differently to reduce the error range of the acquired data even in the stratigraphic structure with specificity between floors. Second, IT convergence technology was applied to enable real-time transmission and reception of information on land resistance data acquired from smart ground electrodes through the Internet of Things. Finally, it is possible to establish a regular management system and analyze big data accumulated in the server to check the trend of changes in various elements, and to model the optimal ground algorithm and ground system design for the IT convergence environment. Conclusion: This technology will reduce surge damage caused by lightning on urban infrastructure underlying the 4th industrial era and design an optimized ground system model to protect the safety and life of users. It is also expected to secure intellectual property rights of pure domestic technology to create jobs and revitalize our industry, which has been stagnant as a pandemic in the post-COVID-19 era.

Analysis of Chloride Ion Penetration Properties into Concrete on Road Facilities Depending on the Deterioration Environments (국도 상 도로시설물 대상 열화환경 조건 별 콘크리트 염화물 침투 특성 분석)

  • Min, Jiyoung;Lee, Jong-Suk;Lee, Tack-gon;Cha, Ki-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.102-113
    • /
    • 2021
  • The deterioration environments caused by de-icing salt and airborne chlorides in the seashore, evaluated in the "Detailed guideline for safety and management practice of facilities (performance evaluation)", were reviewed in terms of penetrated chlorides into concrete on various road facilities. Target concrete structures, in this study, were 4 concrete barriers in Gangwon area, 3 concrete barriers and 1 retaining wall in Busan area, and 4 bridges in Gangwon-do, Seoul, Gyeonggi-do, and Busan. The deterioration environments were classified into three categories: direct and indirect de-icing salt attack, and airborne salt attack depending on the distance to seashore and the height of pier, and the penetrated chlorides in to concrete were analyzed. The results showed that (1) the regional deterioration environments were clearly classified by de-icing salt sprayed days (snowfall days), (2) the penetrated chlorides increased significantly when leakage occurred through slabs or expansion joints, and (3) the airborne chlorides affected to a height of 20 m concrete in the seashore, Busan. From these, it could be confirmed that the chloride ion penetration properties depend on the exposed aging environment, member location and height, and deterioration status, even on the same structure, so the selection of target members and location is very important in the inspection and maintenance. If the database of penetrated chlorides properties in various deterioration environments is constructed, it is expected that the proactive durability management on concrete structures will be possible in the field.

The Case Study on Risk Assessment and Probability of Failure for Port Structure Reinforced by DCM Method (심층혼합처리공법이 적용된 항만 구조물의 파괴확률과 위험도 평가에 관한 사례 연구)

  • Kim, Byung Il;Park, Eon Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.53-64
    • /
    • 2018
  • In this study, the evaluation to probability of failure for risk assessment of port structures on DCM reinforced soils, where stability and risk assessment are increasing in importance, was performed. As a random variables affecting the risk of DCM improved ground, the design strength, superposition (overlap) of construction, strength of the natural ground, internal friction angle and unit weight of the modified ground were selected and applied to the risk assessment. In addition, the failure probability for the entire system under ordinary conditions and under earthquake conditions were analyzed. As a result, it was found that the highest coefficient of variation in the random variable for the risk assessment of the DCM improved ground is the design strength, but this does not have a great influence on the safety factor, ie, the risk of the system. The main risk factor for the failure probability of the system for the DCM reinforced soils was evaluated as horizontal sliding in case of external stability and compression failure in case of internal stability both at ordinary condition and earthquake condition. In addition, the failure probability for ordinary horizontal sliding is higher than that for earthquake failure, and the failure probability for ordinary compression failure is lower than that for earthquake failure. The ordinary failure probability of the entire system is similar to the failure probability on earthquake condition, but in this case, the risk of earthquake is somewhat higher.

A Numerical Study on the Flow and Heat Transfer Characteristics of Aluminum Pyramidal Truss Core Sandwich (알루미늄 피라미드 트러스 심재 샌드위치의 열유동 특성에 관한 수치해석 연구)

  • Kang, Jong-Su;Kim, Sang-Woo;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.638-644
    • /
    • 2019
  • In this study, the fluid flow and heat transfer characteristics within sandwich panels are investigated using computational fluid dynamics. Within the sandwich panels having periodic cellular cores, air can freely move inside the core section so that the structure is able to perform multi-functional roles such as simultaneous load bearing and heat dissipation. Thus, there needs to examine the thermal and flow analysis with respect to design variables and various conditions. In this regard, ANSYS Fluent was utilized to explore the flow and heat transfer within the pyramidal truss sandwich structures by varying the truss angle and inlet velocity. Without the entry effect in the first unitcell, the constant rate of pressure and the constant rate of Nusselt number was observed. As a result, it was demonstrated that Nusselt number increases and friction factor decreases as the inlet velocity increases. Moreover, the rate of Nusselt number and friction factor was appreciable in the range of V=1-5m/s due to the transition from laminar to turbulent flow. Regarding the effect of design variable, the variation of truss angle did not significantly influence the characteristics.

Dispersion Effects of Wave Force on Interlocking Caisson Breakwater with Shear-Key (전단키형 인터로킹 케이슨 방파제의 파력분산효과)

  • Song, Sung Hoon;Park, Min Su;Jeong, Youn Ju;Hwang, Yoon Koog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.195-201
    • /
    • 2019
  • Long caisson breakwaters can improve the structural safety of a caisson due to the wave dispersion effect which reduces the average wave force acting on one caisson. However, in order to make long caissons, there are many manufacturing and construction limitations. Recently, interlocking caisson systems, which are to form a long caisson by interlocking individual caissons with adjacent caissons, have been much attention. In the present study, a interlocking caisson system with shear-keys was proposed and the wave dispersion effect according to the shear-key was evaluated analytically. As a result, (1) Because of the asymmetric shape of the interlocking caisson, the structure behavior and the wave dispersion effect of one are also asymmetric. (2) The wave dispersion effect is more influenced by the distribution and characteristics of wave acting on each caisson rather than the shape of the shear-key such as shear angle, height, shear length ratio. (3) The interlocking caisson breakwater is almost the same behavior and wave dispersion effect as a fully integrated breakwater.

Behaviour of Ground Anchor According to Period Characteristic of Seismic Load Using Numerical Analysis (수치해석을 통한 지진하중의 주기특성에 따른 그라운드 앵커의 거동)

  • Oh, Dong-Wook;Jung, Hyuk-Sang;Yoon, Hwan-Hee;Lee, Yong-Joo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.635-650
    • /
    • 2018
  • Many people have been recognized that the Korean Peninsula is no longer safe area from the earthquake by the recent earthquakes occurred in the country. The earthquakes that occurred at Pohang and Gyeongju appeared differently from them considered in the seismic design and researches on the seismic design method have been also conducted by many researchers. Studies on seismic loads are mainly focused on existing superstructures, and research involving them has been actively carried out in reality. However, paper regarding structural stability of reinforcement from seismic load such as soil-nails, rock-bolts, ground anchors which were constructed to ensure stability of serviced structure have been published rarely. In this study, ground anchor been effected by static load and seismic load which is settled in the weathered rock is analyzed. Results for static load are obtained from field test and seismic load is from numerical analysis. In this study, the behavioral characteristics of the ground anchor were analyzed by numerical analysis in case of seismic loading based on the result of the in-situ tensile test of the ground anchor settled weathered rock. As a result, settlement of concrete block due to application of tension force for ground anchor occurred as well as following loss of axial force for ground anchor. Also, as bond length and period of seismic load are longer, increasement of displacement is greater.

A Study on the Electrical Conductivity and Electromagnetic Shielding of High Performance Fiber Reinforced Cementitious Composites(HPFRCC) (고성능 시멘트 복합체의 전기전도도 및 전자파 특성 시험 평가)

  • Lee, Nam-Kon;Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.37-43
    • /
    • 2019
  • This study investigated electrical conductivity, electromagnetic shielding effectiveness, and mechanical property to improve electromagnetic shielding performance of high performance fiber reinforced cementitious composites (HPFRCC). Steel fiber, steel slag and carbon black as a conductive material were incorporated into the HPFRCC mixes. In addition, 2% CNT solution which was produced by dispersing multi-wall carbon nanotube (MWCNT) into water was used as a conductive material. In the test results, electrical conductivity of HPFRCC specimens was very low except for the specimen incorporating 1% carbon black. Micro structure of cement matrix was changed as the curing time increased, which negatively affected the conductive network of HPFRCC. In case of HC1 specimen showing a conductive network (0.083 S/cm), the electrical conductivity of the specimen after being dried at $60^{\circ}C$ for 72 hours to exclude the effect of water on electrical conductivity was significantly reduced to 0.0003 S/cm. The most important parameter of electromagnetic shielding effect was found to be a steel fiber while the effect of carbon black and steel slag was very few. The correlation between electrical conductivity and electromagnetic shielding effect does not seem to be clear.

Seismic Fragility Analysis of Rahmen-type Continuous Bridge Supported by High Piers (고교각으로 지지된 라멘형 연속교의 지진취약도 분석)

  • Kang, Pan-Seung;Hong, Ki-Nam;Yeon, Yeong-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.84-95
    • /
    • 2019
  • This paper reports the process of seismic fragility analysis for the rahman-type continuous bridge system. The target structure was the five span highway bridge with maximum pier hight of 72m. OpenSees software was used for the nonlinear time history analysis. In this study, 50 ground motions are considered for nonlinear time history analysis. For each ground motion, PGA was scaled from 0.1g to 2.0g with intervals of 0.1g in order to consider a wide range of the seismic intensity measure. In addition, yield displacement and ultimate displacement of each pier were calculated through section analysis. Based on the result of non linear time history analysis and section analysis, damage condition of target bridge was classified according to the definition of damage condition proposed by Barbat et al. As a result, it was predicted that Extensive Damage occurred at P1 when 0.731 g earthquake occurred in the longitudinal direction. Based on the seismic fragility analysis results, it is found that the probability of occurrence of Extensive Damage in the 4,800 - year period earthquake was about 4.2%. Therefore the target bridge has enough safety for earthquake.

A Biomechanics-Based Ergonomic Analysis for Footware Development (풋웨어 개발을 위한 생체역학 기반 인간공학적 분석 : B-boy 신발 개발을 중심으로)

  • Hah, Chong-Ku;Jang, Young-Kwan;Kim, Jin-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.140-147
    • /
    • 2019
  • The purpose of this study is to find biomechanical parameters for optimal shoes production through an ergonomic usability assessment of five existing types of shoes preferred by B-BOY. Ten experts and ten non-experts participated in the experiment, and 12 infrared cameras (Qualis, Oqus), force plate (Kistler, 9286AA) and foot pressure plate (Zebris Gmbh, Zebris PDM-System) were used to obtain the data. The results of the study are as follows. First, P shoes with a friction coefficient of 0.38 and a free moment of 0.32 N/m/kg are desirable in terms of traction capability and safety. Second, on the cushion, it was found that the N shoes 2.51 N, sec/kg and non-expert, and 2.86 N and sec/kg were suitable. Third, it is deemed appropriate for C shoes with a forefoot average pressure of 10.11 KPa (right), 10.05 KPa (left), and V shoes with a rearfoot average pressure of 8.4 KPa (right) and 8.36 KPa (left). In conclusion, the combination of the structure and material of V shoes should be developed for traction and stability, N shoes for cushion, and walking balance for C and V shoes.

A Suggestion of the Direction of Construction Disaster Document Management through Text Data Classification Model based on Deep Learning (딥러닝 기반 분류 모델의 성능 분석을 통한 건설 재해사례 텍스트 데이터의 효율적 관리방향 제안)

  • Kim, Hayoung;Jang, YeEun;Kang, HyunBin;Son, JeongWook;Yi, June-Seong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.5
    • /
    • pp.73-85
    • /
    • 2021
  • This study proposes an efficient management direction for Korean construction accident cases through a deep learning-based text data classification model. A deep learning model was developed, which categorizes five categories of construction accidents: fall, electric shock, flying object, collapse, and narrowness, which are representative accident types of KOSHA. After initial model tests, the classification accuracy of fall disasters was relatively high, while other types were classified as fall disasters. Through these results, it was analyzed that 1) specific accident-causing behavior, 2) similar sentence structure, and 3) complex accidents corresponding to multiple types affect the results. Two accuracy improvement experiments were then conducted: 1) reclassification, 2) elimination. As a result, the classification performance improved with 185.7% when eliminating complex accidents. Through this, the multicollinearity of complex accidents, including the contents of multiple accident types, was resolved. In conclusion, this study suggests the necessity to independently manage complex accidents while preparing a system to describe the situation of future accidents in detail.