• Title/Summary/Keyword: Structure safety

Search Result 4,495, Processing Time 0.036 seconds

Biomass-Derived Three-Dimensionally Connected Hierarchical Porous Carbon Framework for Long-Life Lithium-Sulfur Batteries

  • Liu, Ying;Lee, Dong Jun;Lee, Younki;Raghavan, Prasanth;Yang, Rong;Ramawati, Fitria;Ahn, Jou-Hyeon
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.97-102
    • /
    • 2022
  • Lithium sulfur (Li-S) batteries have attracted considerable attention as a promising candidate for next-generation power sources due to their high theoretical energy density, low cost, and eco-friendliness. However, the poor electrical conductivity of sulfur and its insoluble discharging products (Li2S2/Li2S), large volume changes, severe self-discharge, and dissolution of lithium polysulfide intermediates result in rapid capacity fading, low Coulombic efficiency, and safety risks, hindering Li-S battery commercial development. In this study, a three-dimensionally (3D) connected hierarchical porous carbon framework (HPCF) derived from waste sunflower seed shells was synthesized as a sulfur host for Li-S batteries via a chemical activation method. The natural 3D connected structure of the HPCF, originating from the raw material, can effectively enhance the conductivity and accessibility of the electrolyte, accelerating the Li+/electron transfer. Additionally, the generated micropores of the HPCF, originated from the chemical activation process, can prevent polysulfide dissolution due to the limited space, thereby improving the electrochemical performance and cycling stability. The HPCF/S cell shows a superior capacity retention of 540 mA h g-1 after 70 cycles at 0.1 C, and an excellent cycling stability at 2 C for 700 cycles. This study provides a potential biomass-derived material for low-cost long-life Li-S batteries.

Subjective Perception of Drinking among New College Students of Nursing (간호대학 신입생의 음주 유형)

  • Su-Jin Kim;Sun-Young Lim;Eun-Ju Lee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.1
    • /
    • pp.99-111
    • /
    • 2023
  • Purpose : Although quantitative research on alcohol consumption among nursing students is important, qualitative research is needed to determine the subjective views of individual students, such as their feelings and thoughts, and ensure the implementation of a targeted alcohol intervention program. Q-methodology is a systematic approach that examines the subjective perspectives of individuals, including their views, beliefs, and attitudes, enabling understanding of the types and characteristics according to the individual's subjectivity structure. This study examined the subjective perceptions of drinking among freshmen in nursing college using Q methodology. Methods : Q-sorting was conducted, collecting 38 P samples and 40 statements. The data were analyzed using the PC QUANL program. The principal component factor analysis method was used for Q-factor analysis. Results : The results identified four types of drinking perceptions among freshmen in nursing college. Type 1 was "safety and health pursuit," type 2 was "friendship pursuit," type 3 was "'norm-oriented," and type 4 was "sound manners." When looking at the subjective perceptions of drinking among freshmen in nursing college, there was a common opinion that drinking should not be forced and that it is an individual choice. However, the difference in views (positive and negative) of drinking shows the need for customized educational programs and interventions suitable for each type. Conclusion : Nursing freshmen should be prepared to play an important role in health care as an educational role and model in preventing damage from drinking and maintaining health promotion throughout their life by habituating proper drinking behavior during college life. In addition, it is necessary to develop a plan to increase positive awareness of drinking among nursing students through various strategic programs that can participate in sobriety prevention programs within the university.

A Study on Structural Simulation for Development of High Strength and Lightweight 48V MHEV Battery Housing (고강도 경량 48V MHEV 배터리 하우징 개발을 위한 구조시뮬레이션에 관한 연구)

  • Yong-Dae Kim;Jeong-Won Lee;Eui-Chul Jeong;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.48-55
    • /
    • 2023
  • In this study, on the structure simulation for manufacturing a high strength/light weight 48V battery housing for a mild hybrid vehicle was conducted. Compression analysis was performed in accordance with the international safety standards(ECE R100) for existing battery housings. The effect of plastic materials on compressive strength was analyzed. Three models of truss, honeycomb and grid rib for the battery housing were designed and the strength characteristics of the proposed models were analyzed through nonlinear buckling analysis. The effects of the previous existing rib, double-sided grid rib, double-sided honeycomb rib and double-sided grid rib with a subtractive draft for the upper cover on the compressive strength in each axial direction were examined. It was confirmed that the truss rib reinforcement of the battery housing was very effective compared to the existing model and it was also confirmed that the rib of the upper cover had no significant effect. In the results of individual 3-axis compression analysis, the compression load in the lateral long axis direction was the least and this result was found to be very important to achieve the overall goal in designing the battery housing. To reduce the weight of the presented battery housing model, the cell molding method was applied. It was confirmed that it was very effective in reducing injection pressure, clamping force and weight.

  • PDF

Markov-based time-varying risk assessment of the subway station considering mainshock and aftershock hazards

  • Wei Che;Pengfei Chang;Mingyi Sun
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.303-316
    • /
    • 2023
  • Rapid post-earthquake damage estimation of subway stations is particularly necessary to improve short-term crisis management and safety measures of urban subway systems after a destructive earthquake. The conventional Performance-Based Earthquake Engineering (PBEE) framework with constant earthquake occurrence rate is invalid to estimate the aftershock risk because of the time-varying rate of aftershocks and the uncertainty of mainshock-damaged state before the occurrence of aftershocks. This study presents a time-varying probabilistic seismic risk assessment framework for underground structures considering mainshock and aftershock hazards. A discrete non-omogeneous Markov process is adopted to quantify the time-varying nature of aftershock hazard and the uncertainties of structural damage states following mainshock. The time-varying seismic risk of a typical rectangular frame subway station is assessed under mainshock-only (MS) hazard and mainshock-aftershock (MSAS) hazard. The results show that the probabilities of exceeding same limit states over the service life under MSAS hazard are larger than the values under MS hazard. For the same probability of exceedance, the higher response demands are found when aftershocks are considered. As the severity of damage state for the station structure increases, the difference of the probability of exceedance increases when aftershocks are considered. PSDR=1.0% is used as the collapse prevention performance criteria for the subway station is reasonable for both the MS hazard and MSAS hazard. However, if the effect of aftershock hazard is neglected, it can significantly underestimate the response demands and the uncertainties of potential damage states for the subway station over the service life.

Design and Evaluation of a Knee Protector using a 3D Printing Pad (3D 프린팅 패드를 활용한 무릎 보호대의 설계 및 평가)

  • Xi Yu Li;Jung Hyun Park;Jeong Ran Lee
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.221-229
    • /
    • 2023
  • This study aims to develop knee protectors that provide high safety and fitness, while incorporating a motion-adaptable 3D-printed pad. These protectors were evaluated by individuals who experience knee discomfort or pain. The results are as follows. First, the 3Dprinted pad design of a hexagonal mesh structure, which is modeled for excellent appearance and knee movement. Each unit of the mesh has a outer layer of 2mm thick, a spacer layer of 1 mm in diameter, and is connected by a 1.5 mm bridge. The bridge was extended up to 1.2 cm. Second, the knee brace was designed in three types - cylinder, strap, and combination by Universal design. Impact protection measurements of the three knee protectors demonstrated roughly 80% reduction in impact. Third, based on usability evaluation, cylinder type protectors have the highest ratings in most areas, primarily because of their ease of use. The strap type protector received positive reviews in terms of appearance and care, and the combination type provided stable knee protection. This study demonstrated the potential industrial application of 3D printing technology by designing and evaluating protective products for the human body. The results of this study are expected to aid knee protector manufacturers in developing practical products and promoting the development of protective equipment for other body parts or purposes.

Enhancing Adhesion between Polyphenylene Sulfide Fabric and Polytetrafluoroethylene Film for Thermally Stable Air Filtration Membrane (열안정 공기 여과막용 폴리페닐렌 설파이드 원단과 폴리테트라플루오로에틸렌 필름 사이의 접착력 향상)

  • Jin Uk Kim;Hye Jeong Son;Sang Hoon Kang;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.201-210
    • /
    • 2023
  • Dust filter membranes play a crucial role in human life and various industries, as they contribute to several important aspects of human health, safety, and environmental protection. This study presents the development of a polysulfone@polyphenylene sulfide/polytetrafluoroethylene (PSf@PPS/ePTFE) composite dust filter membrane with excellent thermal stability and adhesion properties for high-temperature conditions. FT-IR analysis confirms successful impregnation of PSf adhesive onto PPS fabric and interaction with ePTFE support. FE-SEM images reveal improved fiber interconnection and adhesion with increased PSf concentration. PSf@PPS/ePTFE-5 exhibits the most suitable porous structure. The composite membrane demonstrates exceptional thermal stability up to 400℃. Peel resistance tests show sufficient adhesion for dust filtration, ensuring reliable performance under tough, high-temperature conditions without compromising air permeability. This membrane offers promising potential for industrial applications. Further optimizations and applications can be explored.

Structural system identification by measurement error-minimization observability method using multiple static loading cases

  • Lei, Jun;Lozano-Galant, Jose Antonio;Xu, Dong;Zhang, Feng-Liang;Turmo, Jose
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.339-351
    • /
    • 2022
  • Evaluating the current condition of existing structures is of primary importance for economic and safety reasons. This can be addressed by Structural System Identification (SSI). A reliable static SSI depends on well-designed sensor configuration and loading cases, as well as efficient parameter estimation algorithms. Static SSI by the Measurement Error-Minimizing Observability Method (MEMOM) is a model-based deterministic static SSI method that could estimate structural parameters from static responses. In the current state of the art, this method is only applicable when structures are subjected to one loading case. This might lead to lack of information in some local regions of the structure (such as the null curvatures zones). To address this issue, the SSI by MEMOM using multiple loading cases is proposed in this work. Observability equations obtained from different loading cases are concatenated simultaneously and an optimization procedure is introduced to obtain the estimations by minimizing the discrepancy between the predicted response and the measured one. In addition, a Genetic-Algorithm (GA)-based Optimal Sensor Placement (OSP) method is proposed to tackle the OSP problem under multiple static loading cases for the very first time. In this approach, the Fisher Information Matrix (FIM)'s determinant is used as the metric of the goodness of sensor configurations. The numerical examples of a 3-span continuous bridge and a 13-story frame, are analyzed to validate the applicability of the extended SSI by MEMOM and the GA-based OSP method.

Review of fire resistance evaluation and fire resistance method of concrete segment lining for fire in tunnel (터널 내 화재발생에 대한 콘크리트 세그먼트 라이닝의 내화성 평가 및 내화방법에 대한 고찰)

  • Moorak Son;Juhyun Cheon;Youngkeun Cho;Bumjoo Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.121-139
    • /
    • 2023
  • Various tunnels such as road, subway, and railway are under construction and operation. Various types of linings are used for structural stability of tunnel structures, and concrete segment linings are mainly installed in TBM tunnel construction. In this paper, when a fire occurs in a tunnel, the impact on the concrete segment lining, which is the structure in the tunnel, and related standards, fire resistance evaluation and fire resistance method are investigated through literature review and related contents are presented. Through this, it is intended to provide an information for practitioners to secure the safety of concrete segment linings against tunnel fires.

Damage Analysis of Train Rail Fishplate (전동차 선로 이음매 판의 파손 해석)

  • Seo-Hyun Yun;Byoung-Chul Choi;Ki-Hang Shin;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.341-347
    • /
    • 2023
  • The subway is one of the most common and important means of transportation in modern society. In order to use the subway safely, tracks are necessary, but trains are prone to derailment and collisions. In order for the train to run safely on the track, the fishplate that connects the line connection is used. The damaged railway was a fishplate for connecting subway lines used for 11 years, and damage analysis and countermeasures were presented. Beach marks were observed on both fracture surfaces, and striations appeared at the range of crack propagation. The damaged part is Cr carbide, which has a higher hardness than the base metal, and is judged to be embrittled and destroyed by fatigue. The SM50C fishplate was subjected to a cyclic stress of about 59% of the upper limit of tensile-compression fatigue limit, but inclusions were the cause of failure. In order to prevent fatigue failure of the SM50C steel fishplate, the occurrence of inclusions should be minimized and processed to have a homogeneous structure when manufacturing the fishplate. In addition, compressive residual stress is given through surface modification such as peening to control crack generation. It is necessary to minimize the change in shape that can become a stress concentration part along with accurate fastening of the bolt, and to design the stress distribution to be as uniform as possible.

Development of Non-Destrutive Pile Soundness Test Using HWAW Method (HWAW(Harmonic Wavelet Analysis of Wave) 방법을 사용한 말뚝기초의 비파괴 건전도 평가방법의 개발)

  • Park, Hyung-Choon;Kim, Dong-Soo;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.13-23
    • /
    • 2008
  • The evaluation of soundness of pile is very important for the safety of super structure. In this paper, the HWAW(Harmonic Wavelet Analysis of Wave) method which is developed to determine phase and group velocities of waves is applied to evaluate integrity of pile non-destructivly. The proposed method can evaluate a soundness of pile and pile end condition which is very important factor for pile behaviour. To verity the applicability of HWAW method in non-destructive test for pile, the numerical simulation test using ABAQUS was performed. And the model pile was made and the proposed non-destructive pile tests were applied to evaluate soundness and end boundary condition of model pile in the air and soil box. Through a numerical simulation and model tests, it is shown that the HWAW method has good potential of applying to the evaluation of pile integrity.