• Title/Summary/Keyword: Structure response

Search Result 5,269, Processing Time 0.029 seconds

The Seismic Behavior of the Truss-Arch Structure by Lead Rubber Bearing and Friction Pendulum System with Seismic Isolation (납고무받침 면진장치와 마찰진자 면진장치에 의한 트러스-아치 구조물의 지진거동 비교)

  • Kim, Gee-Cheol;Seok, Keun-Yung;Kang, Joo-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.374-379
    • /
    • 2008
  • The purpose of seismic isolation system among them is to lengthen the period of structure and make its period shift from the dominant period of earthquake. In this study, the seismic behavior of arch structure with lead rubber bearing(LRB) and friction pendulum system(FPS) is analyzed. The arch structure is the simplest structure and has the basic dynamic characteristics among large spatial structures. Also, Large spatial structures have large vertical response by horizontal seismic vibration, unlike seismic behavior of normal rahmen structures. When horizontal seismic load is applied to the large spatial structure with isolation systems, the horizontal acceleration response of the large spatial structure is reduced and the vertical seismic response is remarkably reduced.

  • PDF

Dynamic Behavior of a Long-Span Bridge Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 장대교량의 동적 거동)

  • Lim, Che-Min;Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.119-124
    • /
    • 2004
  • The effect of soil-structure interaction becomes important in the design of civil structures such as long-span bridges, which are constructed in the site composed of soft soil. Many methodologies have been developed to account for the proper consideration of soil-structure interaction effect. However, it is difficult to estimate soil-structure interaction effect accurately becaused of many uncertainties. This paper presents the results of study on soil-structure interaction and dynamic response of a long-span bridge designed in the site composed of soft soil. The effect of the soft soil was evaluated by the use of computer program SASSI and a long-span bridge structure was modeled by finite elements. Dynamic response characteristics of a long-span bridge considering soil-structure interaction wereinvestigated.

Dynamic Response Characteristics for Two-layered Trackbed Structure by Train Load (열차하중에 의한 이층노반구조의 동적 응답특성)

  • Lee, Il-Wha
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • It is difficult to clarify the dynamic response characteristics of trackbed because of various environmental conditions. However, track irregularity be affected by ununiformed bearing capacity and its dynamic response, study for dynamic response characteristics is required to investigate the cause of track irregularity and countermeasure. In this paper, the response variation for dominant frequency and vibration energy by trackbed structure and material stiffness are investigated. The analysis section is two layered ground structure that is comprised of trackbed and soft rock. This structure amplifies the energy of dominant range easily. It is evaluated to affect track irregularity on comparing by theoritical, analytical and empirical method for dynamic response of the trackbed.

Seismic Response of the Arch Structure with Column (하부기둥을 갖는 아치 구조물의 지진응답에 관한 연구)

  • Kang, Joo-Won;Lee, Sang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.95-102
    • /
    • 2010
  • Spatial structures have the different dynamic characteristics from general rahmen structures and many studies on dynamic behavior of it is conducted. But most studies was conducted about the particular shape of spatial structures and, directly, the usable results of studies are very limited for seismic design of spatial structures with the lower structure. So, this study is conducted about the truss arch structure that the basic dynamic characteristics of spatial structure is inherent in, and the change of its seismic response is analyzed when columns have different length on both ends of it. According to the difference of column's length on both ends, the vertical acceleration response of truss arch structure is affected more than the horizontal acceleration response of it. Therefore, when the stiffness of lower structures that support the upper structure is different, the consideration of the vertical response is significantly required for the seismic design of spatial structures.

  • PDF

Seismic Response of Large Space Structure with Various Substructure (하부구조의 강성변화에 따른 대공간구조물의 지진거동)

  • Kim, Gee-Cheol;Kang, Joo-Won;Ko, Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.3
    • /
    • pp.81-90
    • /
    • 2010
  • Large spatial structures have the different dynamic characteristics from general rahmen structures and many studies on dynamic behavior of it is conducted. But most studies was conducted about the particular shape of large spatial structures and, directly, the usable results of studies are very limited for seismic design of large spatial structures with the lower structure. So, this study is conducted about the truss arch structure that the basic dynamic characteristics of large spatial structure is inherent in, and the change of its seismic response is analyzed when columns have different length on both ends of it. According to the difference of column's length on both ends, the vertical acceleration response of truss arch structure is affected more than the horizontal acceleration response of it. Therefore, when the stiffness of lower structures that support the upper structure is different, the consideration of the vertical response is significantly required for the seismic design of large spatial structures.

  • PDF

Structural Response Analysis for Multi-Linked Floating Offshore Structure Based on Fluid-Structure Coupled Analysis

  • Kichan Sim;Kangsu Lee;Byoung Wan Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.273-281
    • /
    • 2023
  • Recently, offshore structures for eco-friendly energy, such as wind and solar power, have been developed to address the problem of insufficient land space; in the case of energy generation, they are designed on a considerable scale. Therefore, the scalability of offshore structures is crucial. The Korea Research Institute of Ships & Ocean Engineering (KRISO) developed multi-linked floating offshore structures composed of floating bodies and connection beams for floating photovoltaic systems. Large-scale floating photovoltaic systems are mainly designed in a manner that expands through the connection between modules and demonstrates a difference in structural response with connection conditions. A fluid-structure coupled analysis was performed for the multi-linked floating offshore structures. First, the wave load acting on the multi-linked offshore floating structures was calculated through wave load analysis for various wave load conditions. The response amplitude operators (RAOs) for the motions and structural response of the unit structure were calculated by performing finite element analysis. The effects of connection conditions were analyzed through comparative studies of RAOs and the response's maximum magnitude and occurrence location. Hence, comparing the cases of a hinge connection affecting heave and pitch motions and a fixed connection, the maximum bending stress of the structure decreased by approximately 2.5 times, while the mooring tension increased by approximately 20%, confirmed to be the largest change in bending stress and mooring tension compared to fixed connection. Therefore, the change in structural response according to connection condition makes it possible to design a higher structural safety of the structural member through the hinge connection in the construction of a large-scale multi-linked floating offshore structure for large-scale photovoltaic systems in which some unit structures are connected. However, considering the tension of the mooring line increases, a safety evaluation of the mooring line must be performed.

Sensitivity analysis of mass ratio effect on settlement and seismic response of shallow foundation using numerical simulation

  • Kil-Wan Ko;Jeong-Gon Ha;Jinsun Lee;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.649-664
    • /
    • 2023
  • Structural inertial interaction is a representative the effect of dynamic soil-foundation-structure interaction (SFSI), which leads to a relative displacement between soil and foundation, period lengthening, and damping increasing phenomena. However, for a system with a significantly heavy foundation, the dynamic inertia of the foundation influences and interacts with the structural seismic response. The structure-to-foundation mass ratio (MR) quantifies the distribution of mass between the structure and foundation for a structure on a shallow foundation. Although both systems exhibit the same vertical factor of safety (FSv), the MR and corresponding seismic responses attributed to the structure and foundation masses may differ. This study explored the influence of MR on the permanent deformation and seismic response of soil-foundation-structure system considering SFSI via numerical simulations. Given that numerous dimensionless parameters of SFSI described its influence on the structural seismic response, the parameters, except for MR and FSv, were fixed for the sensitivity analysis. The results demonstrated that the foundation inertia of heavier foundations induced more settlement due to sliding behavior of heavily-loaded systems. Moreover, the structural inertia of heavier structures evidently exhibited foundation rocking behavior, which results in a more elongated natural period of the structure for lightly-loaded systems.

In-Structure Response Spectra of Seismically Isolated Shear Buildings Considering Eccentricity Effect (면진된 전단 거동 구조물의 층응답스펙트럼에 대한 편심효과)

  • Lee, Seung Jae;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • For important structures such as nuclear power plants, In-Structure Response Spectrum (ISRS) analysis is essential because it evaluates the safety of equipment and components installed in the structure. Because most structures are asymmetric, the response can be affected by eccentricity. In the case of seismically isolated structures, this effect can be greater due to the difference between the center of mass of the structure and the center of rigidity of the isolator layer. Therefore, eccentricity effects must be considered when designing or evaluating the ISRS of seismically isolated structures. This study investigated the change of the ISRS of an isolated structure by assuming accidental eccentricity. The variables that affect the ISRS of the isolated structure were analyzed to see what additional impact they had due to eccentricity. The ISRS of the seismically isolated structure with eccentricity was amplified more than when there was non-eccentricity, and it was boosted more significantly in specific period ranges depending on the isolator's initial stiffness and seismic intensity. Finally, whether the displacement requirement of isolators can be applied to the variation of the ISRS due to eccentricity in the design code was also examined.

Seismic responses of structure isolated by FPB subject to pounding between the sliding interfaces considering soil-structure interaction

  • Yingna Li;Jingcai Zhang
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.463-475
    • /
    • 2024
  • The study aims to investigate the pounding that occurs between the isolator's ring and slider of isolated structures resulting from excessive seismic excitation, while considering soil-structure interaction. The dynamic responses and poundings of structures subjected a series seismic records were comparatively analyzed for three different soil types and fixed-base structures. A series of parametric studies were conducted to thoroughly discuss the effects of the impact displacement ratio, the FPB friction coefficient ratio, and the radius ratio on the structural dynamic response when considering impact and SSI. It was found that the pounding is extremely brief, with an exceptionally large pounding force generated by impact, resulting in significant acceleration pulse. The acceleration and inter-story shear force of the structure experiencing pounding were greater than those without considering pounding. Sudden changes in the inter-story shear force between the first and second floors of the structure were also observed. The dynamic response of structures in soft ground was significantly lower than that of structures in other ground conditions under the same conditions, regardless of the earthquake wave exciting the structure. When the structure is influenced by pulse-type earthquake records, its dynamic response exhibits a trend of first intensifying and then weakening as the equivalent radius ratio and friction coefficient ratio increase. However, it increases with an increase in the pounding displacement ratio, equivalent radius ratio, friction coefficient ratio, and displacement ratio when the structures are subjected to non-pulse-type seismic record.

Generation of Floor Response Spectra including Equipment-Structure Interaction in Frequency Domain (진동수 영역에서 기기-구조물 상호작용을 고려한 층응답스펙트럼의 작성)

  • Choi, Dong-Ho;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.13-19
    • /
    • 2005
  • Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plants are usually generated without considering dynamic interaction between main structure and subsystem. This study describes the analytic method in which equipment response spectra can be obtained through dynamic analysis considering equipment-structure Interaction(ESI). In this method, dynamic response of the equipment by this method is based on a dynamic substructure method in which the equipment-structure system is partitioned into the single-degree-ol-freedom system(SDOF) representing the equipment and the equipment support impedance representing the dynamic charactenstics of the structure ai the equipment support. A family of equipment response spectra is developed by applying this method to calculate the maximum responses of a family of SDOF equipment systems with wide banded equipment frequency, damping ratio, and mass. The method is validated by comparing the floor response spectrum from this method with the floor response spectrum generated from the rigorous analysis including equipments on the containment building of a prototypical nuclear power plant. in order to Investigate ESI effect in the response of equipment, response values from the method and the conventional approach without considering ESI are compared for the equipment having the mass less than 1% of the total structural mass. Response spectra from the method showed lower spectral amplitudes than those of the conventional floor response spectra around controlling frequencies.