• Title/Summary/Keyword: Structure of muscle

Search Result 395, Processing Time 0.026 seconds

NMR Signal Assignments of Human Adenylate Kinase 1 (hAK1) and its R138A Mutant (hAK1R138A)

  • Kim, Gilhoon;Chang, Hwanbong;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.2
    • /
    • pp.56-60
    • /
    • 2016
  • Adenylate kinase (AK) enzyme which acts as the catalyst of reversible high energy phosphorylation reaction between ATP and AMP which associate with energetic metabolism and nucleic acid synthesis and signal transmission. This enzyme has three distinct domains: Core, AMP binding domain (AMPbd) and Lid domain (LID). The primary role of AMPbd and LID is associated with conformational changes due to flexibility of two domains. Three dimensional structure of human AK1 has not been confirmed and various mutation experiments have been done to determine the active sites. In this study, AK1R138A which is changed arginine[138] of LID domain with alanine[138] was made and conducted with NMR experiments, backbone dynamics analysis and mo-lecular docking dynamic simulation to find the cause of structural change and substrate binding site. Synthetic human muscle type adenylate kinase 1 (hAK1) and its mutant (AK1R138A) were re-combinded with E. coli and expressed in M9 cell. Expressed proteins were purified and finally gained at 0.520 mM hAK1 and 0.252 mM AK1R138A. Multinuclear multidimensional NMR experiments including HNCA, HN(CO)CA, were conducted for amino acid sequence analysis and signal assignments of $^1H-^{15}N$ HSQC spectrum. Our chemical shift perturbation data is shown LID domain residues and around alanine[138] and per-turbation value(0.22ppm) of valine[179] is consid-ered as inter-communication effect with LID domain and the structural change between hAK1 and AK1R138A.

$F_2$ Formant Frequency Characteristics of the Aging Male and Female Speakers (한국어 모음에서 연령증가에 따른 제2음형대의 변화양상)

  • 김찬우;차흥억;장일환;김선태;오승철;석윤식;이영숙
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.10 no.2
    • /
    • pp.119-123
    • /
    • 1999
  • Background and Objectives : Conditions such as muscle atrophy, stretching of strap muscles, and continued craniofacial growth factors have been cited as contributing to the changes observed in the vocal tract structure and function in elderly speakers. The purpose of the present study is to compare F$_1$ and F$_2$ frequency levels in elderly and young adult male and female speakers producing a series of vowels ranging from high-front to low-back placement. Material and Methods : The subjects were two groups of young adults(10 males, 10 females, mean age 21 years old range 19-24 years) and two groups of elderly speakers(10 males, 10 females, mean age 67 years : range 60-84 years). Each subject participated in speech pathologist to be a speaker of unimpared standard Korean. The headphone was positioned 2 cm from the speakers lips. Each speaker sustained the five vowels for 5 s. Formant frequency measures were obtained from an analysis of linear predictive coding in CSL model 4300B(Kay co). Results : Repeated measure AVOVA procedures were completed on the $F_1$ and $F_2$ data for the male and female speakers. $F_2$ formant frequency levels were proven to be significantly lower fir elderly speakers. Conclusions : We presume $F_2$ vocal cavity(from the point of tongue constriction to lip) lengthening in elderly speakers. The research designed to observe dynamic speech production more directly will be needed.

  • PDF

Effectiveness of home-based therapy on gross motor function in children with cerebral palsy: A systematic review (뇌성마비 아동의 대동작 기능에 대한 가정중심치료 효과 : 체계적 고찰)

  • Jung-Hyun, Kim
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.4
    • /
    • pp.27-42
    • /
    • 2022
  • Background: Although children with cerebral palsy (CP) are able to walk independently, gait imbalance occurs due to abnormal muscle tone, musculoskeletal deformity, loss of balance, and selective motor control impairment. Gait restriction in the community and school is a major problem of rehabilitation in CP. Home-based therapy (HBT) provides a variety of interventions in which the therapist and the parent work together to resolve the activities and problems caused by the child's body structure. Therefore, we investigate the effectiveness of home-centered therapy on gross motor function in CP and try to present the possibility of clinical application. Design: A Systematic Review Methods: Research papers were published from Jan, 2012 to Jan, 2022 and were searched using Medline and PubMed. The search terms are 'family-centered' OR 'home-based' AND 'cerebral palsy'. A total of nine papers were analyzed in this study. The paper presented the quality level based on Physiotherapy Evidence Database (PEDro) scores to assess the quality of randomized clinical trials studies. Results: The results showed that HBT for strengthening exercise in lower extremity has a positive effect on the isokinetic torque and gross motor function. home-based treadmill therapy in CP is effective to perform at least 12 sessions of treadmill HBP in which the therapist determines the treadmill speed every week and the child's own gait pattern is modified. Conclusion: These results suggest that it will be important data for founding evidence on the effectiveness of home-centered therapy on gross motor function in children with cerebral palsy to advance clinical protocols.

The effect of hip joint strengthening exercise using proprioceptive neuromuscular facilitation on balance, sit to stand and walking ability in a person with traumatic brain injury: a case report

  • Jung, Du Kyo;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.2
    • /
    • pp.96-104
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the effect of the hip joint strengthening exercises using proprioceptive neuromuscular facilitation (PNF) on the clinical symptoms and the treatment effects in balance, sit to stand, and gait abilities in patients with TBI. Design: A single case study. Methods: A 13-year-old adolescent with quadriplegia and hip joint control impairment participated in this four-week training intervention. The patient, diagnosed with TBI, wastreated with hip joint strengthening exercises using PNF. In the first week, we focused on strengthening the body, relaxing the hip flexors and activating the hip extensor muscles in order to solve the patient's physical function and body structure. From the 2nd and 4th week, we improved the motivation through the task-oriented method, and then weight-bearing training of the right lower extremity was proceeded by kicking a soccor ball with the left lower extremity. The exercises were performed for 4 weeks, 5 days a week, for 60 minutes with the exercise intensity gradually increased according to the subject's physical abilities. Results: As a result of the study, the patient demonstrated improvements in the physical examination, which were evaluated before and after intervention and included the manual muscle test, modified Ashworth scale, sensory assessment, coordination assessment, Berg balance scale, 5-time sit to stand test, and the 10 meters walk test. Conclusions: The results of this case suggest that a hip joint strengthening exercise program using PNF may improve hip control ability, balance, sit to stand and gait ability in a patient with TBI.

The Effect of a Hip Joint Strengthening Exercise using PNF on Balance, Sit-to-Stand Movement, and Gait in a Tibia Fracture Patient with Skin Defects - A Single Case Study - (PNF을 이용한 엉덩관절 강화운동이 피부 결손을 동반한 개방성 정강뼈 골절 환자의 균형과 앉았다 일어서기, 보행에 미치는 영향 - 단일사례연구 -)

  • Jung, Du-Kyo;Chung, Yi-Jung
    • PNF and Movement
    • /
    • v.16 no.3
    • /
    • pp.317-332
    • /
    • 2018
  • Purpose: Patients with tibial fractures can have functional problems with balance and gait, as well as lower extremity muscle weakness. This case report aimed to describe the effect of hip joint strengthening exercises using proprioceptive neuromuscular facilitation (PNF) on balance and gait and lower limb function in a patient with tibia fracture. Methods: One patient diagnosed with tibial fracture was treated for seven weeks with the basic procedure, pattern, and technique of PNF for a hip joint strengthening exercise. Results: The results of pre- and post-intervention treatment showed improvements in physical function and structure in the clinical tests, including the manual strength test; the modified Ashworth scale; sensory evaluation; balance, sit-to-stand, and gait performance; and evaluation of lower limb function. Conclusion: Based on the results of this study, it is suggested that the use of theory-based proprioceptive neuromuscular stimulation for hip joint strengthening exercises positively affects patients' functional improvement in tibial fracture patients, and this may be used as a therapeutic exercise method for those with orthopedic problems in the lower extremities. One limitation of this study was that it was performed on only one tibia fracture patient, which makes it difficult to extend the treatment effects to all patients with this condition.

Synthesis of [18F]-Labelled Nebivolol as a β1-Adrenergic Receptor Antagonist for PET Imaging Agent (베타1-아드레날린 수용체를 표적으로 하는 심근영상제로서 18F 표지된 nebivolol의 합성)

  • Kim, Taek-Soo;Park, Jeong Hoon;Lee, Jun Young;Yang, Seung Dae;Chang, Dong-Jo
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.181-187
    • /
    • 2016
  • Selective ${\beta}_1$-agonist and antagonists are used for the treatment of cardiac diseases including congestive heart failure, angina pectoris and arrhythmia. Selective ${\beta}_1$-antagonists including nebivolol have high binding affinity on ${\beta}_1$-adrenergic receptor, not ${\beta}_2$-receptor mainly expressed in smooth muscle. Nebivolol is one of most selective ${\beta}_1$-blockers in clinically used ${\beta}_1$-blockers including atenolol and bisoprolol. We tried to develop clinically useful cardiac PET tracers using a selective ${\beta}_1$-blocker. Nebivolol is $C_2$-symmetric and has two chromane moiety with a secondary amino alcohol and aromatic fluorine. We adopted the general synthetic strategy using epoxide ring opening reaction. Unlike formal synthesis of nebivolol, we prepared two chromane building blocks with fluorine and iodine which was transformed to diaryliodonium salt for labelling of $^{18}F$. Two epoxide building blocks were readily prepared from commercially available chromene carboxylic acids (1, 8). Then, the amino alcohol building block (15) was prepared by ammonolysis of epoxide (14) followed by coupling reaction with the other building block, epoxide (7). Diaryliodonium salt, a precursor for $^{18}F$-aromatic substitution, was synthesized in moderate yield which was readily subjected to $^{18}F$-aromatic substitution to give $^{18}F$-labelled nebivolol.

The Coordinative Locomotor Training Intervention Strategy Using the ICF Tool to Improve the Standing Posture in Scoliosis: A Case Report

  • Lee, Jeong-a;Kim, Jin-cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.1
    • /
    • pp.7-15
    • /
    • 2021
  • Purpose: This study was examined to improve the standing posture of a scoliosis client using the ICF Tool. Methods: For examination, the study subject was a 16-year-old female student diagnosed with 3curve-pelvic (3CP) type scoliosis. Information about her were collected through a client interview and based on international Classification of Functioning, Disability and Health (ICF). The ICF core set was for post-acute musculoskeletal conditions, and the ICF level 2 items suggested by National Rehabilitation Information Center (NARIC) were added to the recommendations for scoliosis. For evaluation, the ICF assessment sheet was used to identify the interaction among the problems. For the diagnosis, the client's functional problems were described in ICF terms. For the prognosis, the global goals for reaching the client's functional activity and participation level were presented as the long-and short-term goals. For the intervention, a coordinative locomotor training program composed of warm-up, main exercise, and cool-down was applied 3 times a week, 50 minutes a day, for 5 weeks. For the outcome, the differences between before and after the intervention were compared with the ICF qualifier and are shown with the ICF evaluation display. Results: Clinical advantages were observed in body function and structure (7° decrease of thoracic angle, 7 score increase of trunk muscle power, 6.47s improve of one leg standing, 4 score decrease of neck pain). The activity for maintaining the standing posture, in which the client had a primary limitation, was improved. Conclusion: Applying the coordinative locomotor training program is expected to improve scoliosis client's standing posture.

Understanding and Research Trends in Liquid Crystal Elastomer Fibers (액정 엘라스토머 섬유의 이해와 연구동향)

  • Young Been Kim;Dae Seok Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.347-356
    • /
    • 2023
  • Liquid crystal elastomer (LCE) fibers have been widely applied in various fields, such as soft robots and biomimetic actuators, in a one-dimensional form. LCEs possess the characteristics of both fluidity and solid order, as well as the elasticity of rubber, and exhibit stimulus-response based on these properties. In particular, by programming the responsiveness to various stimuli such as heat, light, electric fields, and magnetic fields in terms of shape-changing, various movements such as lifting, twisting, and rotating can be realized with high degrees of freedom. Therefore, LCE fibers have the potential for application in various fields such as artificial muscles, soft robots, wearable technologies, and sensing technologies. The research on liquid crystal elastomer fibers is evaluated to have high applicability in various fields in the Fourth Industrial Revolution as a smart material that can include various functionalities beyond simple fibers. In this review, we introduce the structure and basic characteristics of liquid crystal elastomer fibers, the latest research trends on orientation-based fabrication methods, and various applications such as artificial muscles, smart fabrics, and soft robots.

Attention-Based Heart Rate Estimation using MobilenetV3

  • Yeo-Chan Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.1-7
    • /
    • 2023
  • The advent of deep learning technologies has led to the development of various medical applications, making healthcare services more convenient and effective. Among these applications, heart rate estimation is considered a vital method for assessing an individual's health. Traditional methods, such as photoplethysmography through smart watches, have been widely used but are invasive and require additional hardware. Recent advancements allow for contactless heart rate estimation through facial image analysis, providing a more hygienic and convenient approach. In this paper, we propose a lightweight methodology capable of accurately estimating heart rate in mobile environments, using a specialized 2-channel network structure based on 2D convolution. Our method considers both subtle facial movements and color changes resulting from blood flow and muscle contractions. The approach comprises two major components: an Encoder for analyzing image features and a regression layer for evaluating Blood Volume Pulse. By incorporating both features simultaneously our methodology delivers more accurate results even in computing environments with limited resources. The proposed approach is expected to offer a more efficient way to monitor heart rate without invasive technology, particularly well-suited for mobile devices.

Studies on the Myofibrillar Proteins Part I. Phase Microscopy of Myofibrils from Rabbit Muscle (근원섬유 단백질에 관한 연구 (제1보) 근원섬유에 관한 형태학적 연구)

  • Yang, Ryung;Kim, Chul-Jai;Moon, Yoon-Hee;Yu, Ju-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.79-85
    • /
    • 1974
  • To obtain further information concerning the nature myofibrillar proteins in a food system, an investigation has been conducted to compare the change in the biochemical property of the myofibril with the changes in the morphological structure of the myofibril. When myofibrils were prepared with 0.16 M KCl-0.04 M Tris-HCl, the band pattern was clear and distinct. There was a uniform thickening of A-band, a sharp appearence of Z-lines and a wide I-band. The band pattern of myofibrils was changed as the composition of extraction solution was changed. Also the ATPase activity of myofibril changed as the length of sarcomere changed. When myofibrils were treated with a low concentration of trypsin, myofibrils turned in the contracted state. With the progress of prolonged trypsin treatment, most of myofibrils exhibited a pattern of alternating light and dark bands, supercontracted pattern. Although myofibrils exhibited a supercontracted band pattern, the ATPase activity of myofibril continued to increase with the progress of trypsin treatment. An assumption was made that tropomyosin may be located in Z-line and that troponin-tropomyosin complex can inhibit the ATPase activity of myofibrils through the structural alternation of myofibril.

  • PDF