• 제목/요약/키워드: Structure modeling

검색결과 3,634건 처리시간 0.032초

퍼지추론 방법에 의한 퍼지동정과 하수처리공정시스템 응용 (Fuzzy Identification by means of Fuzzy Inference Method and Its Application to Wate Water Treatment System)

  • 오성권;주영훈;남위석;우광방
    • 전자공학회논문지B
    • /
    • 제31B권6호
    • /
    • pp.43-52
    • /
    • 1994
  • A design method of rule-based fuzzy modeling is presented for the model identification of complex and nonlinear systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of ``IF....,THEN...', using the theories of optimization theory , linguistic fuzzy implication rules and fuzzy c-means clustering. Three kinds of method for fuzzy modeling presented in this paper include simplified inference (type I), linear inference (type 2), and modified linear inference (type 3). In order to identify premise structure and parameter of fuzzy implication rules, fuzzy c- means clustering and modified complex method are used respectively and the least sequare method is utilized for the identification of optimum consequence parameters. Time series data for gas furance and those for sewage treatment process are used to evaluate the performance of the proposed rule-based fuzzy modeling. Comparison shows that the proposed method can produce the fuzzy model with higher accuracy than previous other studies.

  • PDF

대화형 캐릭터 애니메이션 생성과 데이터 관리 도구 (An Interactive Character Animation and Data Management Tool)

  • 이민근;이명원
    • 정보처리학회논문지A
    • /
    • 제8A권1호
    • /
    • pp.63-69
    • /
    • 2001
  • In this paper, we present an interactive 3D character modeling and animation including a data management tool for editing the animation. It includes an animation editor for changing animation sequences according to the modified structure of 3D object in the object structure editor. The animation tool has the feature that it can produce motion data independently of any modeling tool including our modeling tool. Differently from conventional 3D graphics tools that model objects based on geometrically calculated data, our tool models 3D geometric and animation data by approximating to the real object using 2D image interactively. There are some applications that do not need precise representation, but an easier way to obtain an approximated model looking similar to the real object. Our tool is appropriate for such applications. This paper has focused on the data management for enhancing the automatin and convenience when editing a motion or when mapping a motion to the other character.

  • PDF

Toward precise and accurate modeling of matter clustering in redshift space

  • Oh, Minji
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.40.3-40.3
    • /
    • 2018
  • This dissertation presents the results on two-dimensional Redshift space distortion (hereafter RSD) analyses of the large-scale structure of the universe using spectroscopic data and on improvement of modeling of the RSD effect. RSD is an effect caused by galaxies' peculiar velocity on their clustering feature in observation along the line of sight and is thus intimately connected to the growth rate of the structure in the universe, from which we can test the origin of cosmic acceleration and Einstein's theory of gravity at cosmic scales in the end. However, there are several challenges in modeling precise and accurate RSD effect, such as non-linearities and the existence of an exotic component, e.g. massive neutrino. As part of endeavors for modeling more precise and accurate galaxy clustering in redshift space, this dissertation includes a series of works for this issue. (More detailed descriptions were omitted.)

  • PDF

2차원 수치해석을 이용한 말뚝 지지구조물의 동적 원심모형실험 거동 모사 (2D Numerical Simulation of a Dynamic Centrifuge Test for a Pile-Supported Structure)

  • ;;김성렬
    • 한국지반공학회논문집
    • /
    • 제34권8호
    • /
    • pp.15-26
    • /
    • 2018
  • 최근, 성능기반 내진설계법이 도입되면서 동적수치해석을 수행하여 지진에 대한 구조물의 실제 거동을 엄밀히 평가하는 것이 필요해지고 있다. 성능기반설계를 수행하려면 수치해석 모델링의 적용성을 검증하는 것이 매우 중요하다. 그러므로, 본 연구에서는 2차원 수치해석을 수행하여 말뚝지지 구조물의 동적 거동을 분석하고 수치모델링 기법과 입력변수값 산정방법을 제안하였다. 수치모델링의 적용성은 느슨한 사질토 지반에 설치된 무리말뚝의 동적 원심모형실험 결과와 비교하여 검증하였다. 본 수치모델링은 동적 지반 물성값, 지반-말뚝 상호작용, 경계조건, 무리말뚝과 구조물의 모델링 등 원심모형실험의 실제 조건을 반영하도록 모델링하였다. 그 결과, 수치해석에서 얻어진 결과는 지반 내 가속도 변화, 말뚝의 모멘트와 변위, 그리고 구조물의 변위와 가속도 결과를 잘 모사하였다. 그러므로, 본 수치모델링 기법과 입력변수 산정기법이 무리말뚝의 내진성능을 평가할 때 유용하게 적용될 수 있을 것으로 판단된다.

Conformational Sampling of Flexible Ligand-binding Protein Loops

  • Lee, Gyu-Rie;Shin, Woong-Hee;Park, Hahn-Beom;Shin, Seok-Min;Seok, Cha-Ok
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.770-774
    • /
    • 2012
  • Protein loops are often involved in diverse biological functions, and some functional loops show conformational changes upon ligand binding. Since this conformational change is directly related to ligand binding pose and protein function, there have been numerous attempts to predict this change accurately. In this study, we show that it is plausible to obtain meaningful ensembles of loop conformations for flexible, ligand-binding protein loops efficiently by applying a loop modeling method. The loop modeling method employs triaxial loop closure algorithm for trial conformation generation and conformational space annealing for global energy optimization. When loop modeling was performed on the framework of ligand-free structure, loop structures within $3\AA$ RMSD from the crystal loop structure for the ligand-bound state were sampled in 4 out of 6 cases. This result is encouraging considering that no information on the ligand-bound state was used during the loop modeling process. We therefore expect that the present loop modeling method will be useful for future developments of flexible protein-ligand docking methods.

SCPWL 모델을 이용한 Super-RENS 디스크 시스템의 비선형 모델링 (Nonlinear Modeling of Super-RENS Disc Systems Using a SCPWL Model)

  • 서만중;전석훈;임성빈
    • 대한전자공학회논문지TC
    • /
    • 제47권12호
    • /
    • pp.24-30
    • /
    • 2010
  • Super-RENS (Super-Resolution Near-field Structure) 디스크 시스템은 BD (Blu-ray Disc) 이후의 차세대 광 기록 저장 시스템의 유망한 후보이다. 따라서 super-RENS 시스템을 위한 등화기 개발과 성능 분석을 위해 정확하고 신뢰성 있는 채널 모델링은 매우 중요하다. 본 논문에서는 super-RENS 시스템의 모델링을 위해 SCPWL (Simplicial Canonical Piecewise-Linear) 모델을 적용하고자 한다. Super-RENS 디스크로부터 획득한 RF 신호 샘플들을 사용하여 모의실험을 수행한 결과, super-RENS 시스템의 비선형 모델링을 위해 SCPWL 모델이 효과적으로 활용될 수 있다는 것을 확인하였다.

Organ Shape Modeling Based on the Laplacian Deformation Framework for Surface-Based Morphometry Studies

  • Kim, Jae-Il;Park, Jin-Ah
    • Journal of Computing Science and Engineering
    • /
    • 제6권3호
    • /
    • pp.219-226
    • /
    • 2012
  • Recently, shape analysis of human organs has achieved much attention, owing to its potential to localize structural abnormalities. For a group-wise shape analysis, it is important to accurately restore the shape of a target structure in each subject and to build the inter-subject shape correspondences. To accomplish this, we propose a shape modeling method based on the Laplacian deformation framework. We deform a template model of a target structure in the segmented images while restoring subject-specific shape features by using Laplacian surface representation. In order to build the inter-subject shape correspondences, we implemented the progressive weighting scheme for adaptively controlling the rigidity parameter of the deformable model. This weighting scheme helps to preserve the relative distance between each point in the template model as much as possible during model deformation. This area-preserving deformation allows each point of the template model to be located at an anatomically consistent position in the target structure. Another advantage of our method is its application to human organs of non-spherical topology. We present the experiments for evaluating the robustness of shape modeling against large variations in shape and size with the synthetic sets of the second cervical vertebrae (C2), which has a complex shape with holes.

On the usefulness of discrete element computer modeling of particle packing for material characterization in concrete technology

  • Stroeven, P.;Hu, J.;Stroeven, M.
    • Computers and Concrete
    • /
    • 제6권2호
    • /
    • pp.133-153
    • /
    • 2009
  • Discrete element modeling (DEM) in concrete technology is concerned with design and use of models that constitute a schematization of reality with operational potentials. This paper discusses the material science principles governing the design of DEM systems and evaluates the consequences for their operational potentials. It surveys the two families in physical discrete element modeling in concrete technology, only touching upon probabilistic DEM concepts as alternatives. Many common DEM systems are based on random sequential addition (RSA) procedures; their operational potentials are limited to low configuration-sensitivity features of material structure, underlying material performance characteristics of low structure-sensitivity. The second family of DEM systems employs concurrent algorithms, involving particle interaction mechanisms. Static and dynamic solutions are realized to solve particle overlap. This second family offers a far more realistic schematization of reality as to particle configuration. The operational potentials of this family involve valid approaches to structure-sensitive mechanical or durability properties. Illustrative 2D examples of fresh cement particle packing and pore formation during maturation are elaborated to demonstrate this. Mainstream fields of present day and expected application of DEM are sketched. Violation of the scientific knowledge of to day underlying these operational potentials will give rise to unreliable solutions.

METHOD FOR THE ANALYSIS OF TEMPORAL CHANGE OF PHYSICAL STRUCTURE IN THE INSTRUMENTATION AND CONTROL LIFE-CYCLE

  • Goring, Markus;Fay, Alexander
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.653-664
    • /
    • 2013
  • The design of computer-based instrumentation and control (I&C) systems is determined by the allocation of I&C functions to I&C systems and components. Due to the characteristics of computer-based technology, component failures can negatively affect several I&C functions, so that the reliability proof of the I&C systems requires the accomplishment of I&C system design analyses throughout the I&C life-cycle. On one hand, this paper proposes the restructuring of the sequential IEC 61513 I&C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a metamodel for the modeling of I&C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I&C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I&C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis.

모델링 방법의 차이에 따른 원전계측캐비넷의 동특성 해석 결과 비교분석 (comparative Study of Analytical Modal Properties of Instrumentation Cabinet of Nuclear Power Plant)

  • 조양희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.186-192
    • /
    • 1999
  • Safety-related equipments of nuclear power plant must be seismically qualified to demonstrate their ability to function as required during and/or after the earthquake, The seismic qualification is usually achieved through analysis and testing. Analysis method is preferably adopted for structurally simple equipments which are easy to be mathematically modeled. However even for relatively complex equipments analysis method is occasionally used for computing the input motion or supporting information for the component test followed. Electrical cabinet is a typical example for which analysis method is combinedly used with test to get modal properties of the enclosing cabinet structure. Usually the structural elements and doors of the cabinet are loosely interconnected with small-size bolts or spot welding. Therefore cabinet-type equipment usually has high and complex nonlinear properties which are not easily idealized by simple practical modeling techniques. in this paper with respect to a typical cabinet-type structure(instrumentation cabinet of nuclear power plant) a comparative study has been performed between three different state-of-the -art modeling techniques: lumped mass model frame model and FEM modal. Form the study results it has been found that modal properties of the cabinet-type structure in the elastic behavior range can be reasonably computed through any type of modeling techniques in the practice with slight modification of model properties to get better accuracy. However it needs additional modeling techniques to get reasonable results up to nonlinear range.

  • PDF