• Title/Summary/Keyword: Structure Steel

Search Result 4,116, Processing Time 0.028 seconds

Resistance In Chloride ion Penetration and Pore Structure of Concrete Containing Pozzolanic Admixtures (포졸란재 함유 콘크리트의 세공구조와 염화물이온 침투 저항성)

  • 소양섭;소형석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.100-109
    • /
    • 2002
  • Significant damage to concrete results from the intrusion of corrosive solutions, for example, dissolved chlorides corrode reinforcing steel and cause spatting. Effectively blocks the penetration of these solutions will eliminate or greatly reduce this damage and lead to increased durability. This study is to investigate the effects of pozzolanic admixtures, fly ash and silica fume, and a blast furnace slag on the chloride ion penetration of concretes. The main experimental variables wore the water-cementitious material ratios, the types and amount of admixtures, and the curing time. And it is tested for the porosity and pore size distributions of cement paste, chloride ion permeability based on electrical conductance, and 180-day ponding test for chloride intrusion. The results show that the resistance of concrete to the penetration of chloride ions increases as the w/c was decreased, and the increasing of curing time. Also, concrete with pozzolans exhibited higher resistance to chloride ion penetration than the plain concrete. The significant reduction in chloride ion permeability(charge passed) of concrete with pozzolans due to formation of a discontinuous macro-pore system which inhibits flow. It is shown that there is a relationship between chloride ion permeability and depth of chloride ion penetration of concrete, based on the pore structure (porosity and pore size distributions) of cement paste.

An Investigation of Preferred Orientation and Microhardness of Nickel-Tin and Tin-Zinc Alloy Electrodeposits on Mild Steel (연강에서의 닉켈-주석과 주석-아연합금 전착층의 우성배향와 미소경도에 관한 연구)

  • Ahn, Deog-Su;Pyun, Su-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.13 no.3
    • /
    • pp.146-154
    • /
    • 1980
  • The effects of various electrodeposition conditions (deposition temperature and cathode current density) on preferred orientation and microhardness of electrodeposited Ni-Sn and Sn-Zn alloys were studied. At deposition temperatures from 25$^{\circ}$ to 95$^{\circ}C$ and constant cathode current density of 270 and 530 A/$m^2$ Ni-Sn and Sn-Zn were codeposited in chloride-fluoride acid and stannate-cyanide alkaline electrolyte bath respectively. Ni-Sn alloy deposited at temperatures from 25$^{\circ}$ to 35$^{\circ}C$ was composed of single phase of $Ni_3Sn_4$ with 73 wt.% Sn and the one deposited at temperatures from 45$^{\circ}$ to 95$^{\circ}C$ was made of multiphase mixture of NiSn, $Ni_3Sn_2$ and $Ni_3Sn_4$ with nearly equiatomic composition (65.5 wt.% Sn). The random orientation of thermody-namically metastable NiSn phase (hexagonal structure) predominated at deposition temperature range 25$^{\circ}$-45$^{\circ}C$, and the strong (110) preferred orientation was found at 65$^{\circ}$-85$^{\circ}C$ and then disappeared again at 95$^{\circ}C$. The microhardness of Ni-Sn deposits increased with deposition temperature up to 85$^{\circ}C$, and then decreased at constant cathode current density. The preferred orientation and the maximum microhardness were discussed in terms of lattice contractile stress which result from desorption of hydrogen atom absorbed in deposit lattice. The Sn content of Sn-Zn alloy deposits increased with deposition temperature up to 75$^{\circ}C$, and then decreased at constant cathode current density of 530 A/$m^2$. It also decreased with cathode current density up to 530 A/$m^2$, and then increased at constant deposition temperature of 25$^{\circ}C$. Sn-Zn alloy deposits were composed of two-phase mixture of ${beta}$-Sn and Zn. The preferred orientations of ${beta}$-Sn (tetragonal structure) changed with deposition temperature. The microhardness of Sn-Zn deposits decreased with deposition temperature. It also increased with cathode density up to 530 A/$m^2$, and then decreased at constant deposition temperature of 25$^{\circ}C$. The microhardness of Sn-Zn deposits was observed to be determinded more by the Sn content than by the preferred orientation.

  • PDF

Characteristics of Building Structural System with IsoTruss® Grid (IsoTruss® 그리드를 적용한 건물구조시스템의 특성)

  • Kim, Tae-Heon;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.737-742
    • /
    • 2017
  • Recently, unconventional high-rise building shapes have attracted attention as a landmark of metropolitan cities and the search for innovative building forms in architecture is ongoing. In this study, $Isotruss^{(R)}$ grid(ITG) used in smaller scale structures was applied to building structural systems and its structural performance was examined. The structural behavior of an ITG was compared with that of a diagrid structure as a reference structure. The stiffness-based design method of the diagrid system was used for the preliminary design stage of member sizing in an ITG. The structural design of 16, 32, and 48-story buildings was carried out for the two systems with the same size. The angle of the inclined columns for ITG and diagrid was $59^{\circ}$ and $68.2^{\circ}$, respectively. The lateral stiffness, steel tonnage of the exterior frame, axial strength ratio, story drift ratio, and natural frequency of the two systems were compared. Based on the analysis result of 6 buildings, the two systems had similar structural capacity; 93.3% and 88.7% of the lateral load was carried by the perimeter frame in the ITG system and diagrid system, respectively. This suggests that the ITG system is better in arranging core columns. Therefore, the proposed ITG system has not only a unique façade, but also substantial structural capacity equivalent to the existing system.

A Pilot Test for the Utilization of Road Subsoil of the Tertiary Mudstone in Pohang Basin (포항분지 제3기 이암의 도로 노체 활용을 위한 현장시험)

  • Gong, Jeong-Sik;Baek, In-Woo;Kim, Jae-Gon;Song, Young-Suk;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • The purpose of this study is to present the possibility a utilization of the tertiary mudstone in Pohang as road subsoil material through pilot experiments on the road embankment structure. This mudstone is an unconsolidated rock that is distributed in the soft rock sedimentary layer, the tertiary layer of the Cenozoic, and causes physical problems such as slaking, swelling, and reduced shear strength and chemical problem like acid drainage. In order to solve various complex problems, an laboratory mixing test was conducted, and the optimal mixing conditions of the tertiary mudstone (90%), composite slag (steel making 70%, blast furnace 30%), and neutralization and coating agent treatment were derived. In order to prove its utilization, a real-scale road embankment structure was constructed and tests were conducted for each section. The pre-processing section is stable due to the design of optimal mixing conditions, while in post-processing section, natural weathering proceeded rapidly, and structural problems were concerned. Since the effect of neutralizing and coating agents was confirmed in temporary-staking section, the neutralizing and coating agents can be applied during the temporary storage period.

Flexible Unit Floor Plan of Off-Site Construction Housing Considering Long-Lasting Housing Certification System (장수명주택 인증을 고려한 OSC공법 주택의 가변형 평면계획 연구)

  • Lee, Ji-Eun;Roh, Jeong-Yeol;Kwon, Soo-Hye;Kim, Seung-Mo
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.103-117
    • /
    • 2021
  • With the current rapid changes in population and technology, the long-lastig housing certification system is a means of prolonging the physical and functional lifespan of a building. The certification requires differentiation between the structure and infill elements to allow for variability and ease of repairs. This works well with prefabricated houses so this study investigated the possibility of applying the long-lastig housing certification requirements to apartment construction using off-site construction (OSC) methods focused on the installation of bathrooms (plumbing and toilet) that differ from the traditional wet method. This study examined three different sized floor plans at 22 m2, 46 m2, and a combined one resulting in 69 m2. The larger 69 m2 plan utilized a removeable non-load bearing wall to increase flexibility in the layout of the floorplan. The apartments are constructed of steel reinforced concrete composite columns on a 9 m × 10.5 m grid with integrated slabs. The exterior and interior infill walls are all non-load bearing with some containing plumbing. This separation of the structure and infill walls can help meet some of the criteria in the long-lastig housing certification, particularly with the ease of repairs. Technologies that facilitate the replacement of infill elements that contain plumbing and other building services can benefit the nation by reducing carbon emissions and therefore tax incentives should be introduced to increase the adoption of the proposed construction methods.

Low-cost Impedance Technique for Structural Health Monitoring (임피던스 기반 저비용 구조물 건전성 모니터링 기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.265-271
    • /
    • 2018
  • This paper presents a method for detecting damage to a structure at low cost using its impedance. The impedance technique is a typical method to detect local damage for structural health monitoring. This is a common technique for estimating damage by monitoring the electro-mechanical admittance signal of the structure. To apply this technique, an expensive impedance analyzer is generally used. On the other hand, it is necessary to develop a low-cost variant to effectively disseminate the technique. In this study, a method based on the transfer impedance using a function generator and digital multimeter, which are generally used in the laboratory instead of an impedance analyzer, was developed. That is, this technique estimates the damage by comparing the damage index using the amplitude ratio of the output voltage measured in the healthy and damaged state. A transfer impedance test was carried out on a steel specimen. By comparing the damage index, the presence of damage could be assessed reasonably. This study is a basic investigation of an impedance-based low-cost damage detection method that can be used effectively for structural health monitoring if supplemented with future research to estimate the damage location and severity.

Analysis of the Behavior Characteristics of Pile Foundations Responding to Ground Deformation (지반 변형 대응형 말뚝 기초의 거동 특성 분석)

  • Lee, Junwon;Shin, Sehee;Lee, Haklin;Kim, Dongwook;Lee, Kicheol
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.21-32
    • /
    • 2020
  • As the global large-scale infrastructure construction market expands, the construction of civil engineering structures in extreme environments such as cold or hot regions is being planned or constructed. Accordingly, the construction of the pile foundation is essential to secure the bearing capacity of the upper structure, but there is a concern about loss of stability and function of the pile foundation due to the possibility of ground deformation in extreme cold and hot regions. Therefore, in this study, a new type of pile foundation is developed to respond with the deformation of the ground, and the ground deformation that can occur in extreme cold and hot region is largely divided into heaving and settlement. The new type of pile foundation is a form in which a cylinder capable of shrinkage and expansion is inserted inside the steel pipe pile, and the effect of the cylinder during the heaving and settlement process was analyzed numerically. As a result of the numerical analysis, the ground heaving caused excessive tensile stress of the pile, and the expansion condition of the cylinder shared the tensile stress acting on the pile and reduced the axial stress acting on the pile. Ground settlement increased the compressive stress of the pile due to the occurrence of negative skin friction. The cylinder must be positioned below the neutral point and behave in shrinkage for optimum efficiency. However, the amount and location of shrinkage and expansion of cylinder must comply with the allowable displacement range of the upper structure. It is judged that the design needs to be considered.

Seismic Performance Evaluation of Dam Structures and Penstock Considering Fluid-Structure Interaction (유체-구조물 상호작용을 고려한 댐 구조체와 수압철관의 내진성능평가)

  • Heo, So-Hyeon;Nam, Gwang-Sik;Jeong, Yeong-Seok;Kwon, Minho
    • Land and Housing Review
    • /
    • v.13 no.1
    • /
    • pp.141-150
    • /
    • 2022
  • Responding to the increasing demand for research on seismic resistance of structures triggered by a large-scale earthquake in Korea, the Ministry of the Interior and Safety revised the typical application of the existing seismic design standards with the national seismic performance target enhanced. Therefore, in this paper, the dam body of the aged Test-Bed and the penstock with fluid were modeled by the three-dimensional finite element method by introducing several variables. The current seismic design standard law confirmed the safety of the dam structure and penstock against seismic waves. As a result of the 3D finite element analysis, the stress change due to the water impact of the penstock was minimal, and it was confirmed that the effect of the hydraulic pressure was more significant than the water impact in the earthquake situation. When the hydrostatic pressure is in the form of SPH, it was analyzed that the motion of the fluid and the location of stress caused by the earthquake can be effectively represented, and it will be easier to analyze the weak part. As a result of the analysis, which considers penstock's corrosion, the degree of stress dispersion gets smaller because the penstock is embedded in the body. The stress result is minimal, less than 1% of the yield stress of the steel. In addition, although there is a possibility of micro-tensile cracks occurring in the inlet of the dam, it has not been shown to have a significant effect on the stress increa.

A study of the space sterilization device using atmospheric-pressure DBDs plasma (대기압 유전체장벽방전을 적용한 플라즈마오존 공간살균장치에 관한 연구)

  • Oh, Hee-Su;Lee, Kang-yeon;Park, Ju-Hoon;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.281-289
    • /
    • 2022
  • Plasma ozone is utilized in a variety of applications in the field of sterilization due to its high sterilization performance. Dielectric materials used in DBD(dielectric barrier discharges) are mainly polymer, quartz and ceramics. These dielectric layers have the advantage of limiting the amount of supplied electron charge and allowing plasma to occur evenly on the surface of dielectric. Actually, the target or environment for sterilization is often a complex structure, so research and academic study are needed by utilizing the concept of space sterilization. In this study, the device is applied to generate DBD plasma at atmospheric pressure for disinfection due to the effectiveness in producing radicals and ozone. The generator of plasma ozone is a basic structure of dielectric barrier discharge by placing ceramic tube dielectrics and stainless steel electrical conductors at regular intervals. Various applications can be developed based on the proposed design method. Plasma ozone generation for space sterilization device is recognized as an excellent sterilization device. Through the design and verification of the device, we intend to establish an optimal design of the spatial sterilization device and provide the basis data for sterilization applications.

A Study on the Numerical Analysis Methods for Predicting Strength Test Result of Box Girder under Bending Moment (휨 모멘트를 받는 박스거더 구조 강도 실험에 대한 수치해석 방법에 관한 연구)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.488-496
    • /
    • 2023
  • Ship and bridge structures are a type of long box-shaped structure, and resistance to vertical bending moment is a key factor in their structural design. In particular, because box girders are repeatedly exposed to irregular wave loads for a long time, the continuous collapse behavior of structural members must be accurately predicted. In this study, plastic collapse behavior, including buckling according to load changes of the box girder receiving pure bending moments, was analyzed using a numerical analysis method. The analysis targets were selected as three box girders used in the Gordo experiment. The cause of the difference was considered by comparing the results of the structural strength experiment with those of non-linear finite element analysis. This study proposed a combination of the entire and local sagging shape to reflect the effect of the initial sagging caused by welding heat that is inevitably used to manufacture carbon steel materials. The procedures reviewed in the study and the contents of the initial sagging configuration can be used as a good guide for analyzing the final strength of similar structures in the future.