• Title/Summary/Keyword: Structure Stability

Search Result 4,009, Processing Time 0.035 seconds

A Study on Analysis of Acquisition Program of Human Strength (미래 군 구조에 부합된 전문인력 획득을 위한 인력획득제도 분석에 관한 연구)

  • Kim, Sung-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.4
    • /
    • pp.201-208
    • /
    • 2008
  • This thesis is the result of the study about 'How we should develop the human resources program to gain human strength in the strategic environment of the future?' Once again, regional stability is interdependent with economic stability, political stability, and military stability of all the factors in the region. History shows that if a militarily capable regime lacks economic resources, then there is political pressure on the regime to use their military to acquire needed resources. The purpose of this study is to find the way that how to gain excellent human resources now and in the future. Military man power should be strong whenever. The Ministry of National Defense has "Reform Military Structure Plan". The focus of this Plan is Korean military strategy in the situation of the confrontation between South and North Korea and in the situation of the international relationship and the way of constructing the military strength for the future. To study these subjects, I reviewed the theories of "Acquisition Program of Human Strength" were developed and assessed the future strategic environment of the Korean Peninsula. From these studies, I suggest that The Ministry of National Defense should pursue preparing for the future military strategy and military structure. we should be skillful in supplementing the Human Strength. We should study about Military Revolution Plan and Human Strength structure for the future.

  • PDF

Design Alteration of a Milling Machine Structure for the Improved Stability (동적 안정성 향상을 위한 밀링 머신의 구조개선)

  • Ro, Seung-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.72-78
    • /
    • 2006
  • Inherent in machine tool structures are the vibrations which are generated by rotating parts such as motors, spindles and chucks. The vibrations not only hurt the precision machining but also damage the structures, and become more serious with time. Many of the old machine tools show severe vibrations for the desired accuracy of the modern industries. It is too much of a waste, however, to get rid of them as scraps. There have been many researches in order to suppress the vibrations of old machine tool structures using the tool post which utilizes actuators to compensate the existing vibrations and using the dampers or absorbers attached to some critical parts. In this paper, the dynamic properties are analyzed to obtain the natural frequencies and mode shapes of a machine tool structure which reflect the main reasons of the biggest vibrations under the given operating conditions. And the feasibility of improving the stability of the structure has been investigated with minor design changes and expenses. The result of the study shows that simple changes based on proper system identification can considerably improve the stability of the machine tool structure.

  • PDF

Thermal Stability and Domain Structure in Spin Valve Films with IrMn Exchange Biased Layers (IrMn 교환결합층을 갖는 스핀밸브막에서의 열적안정성과 자구구조 관찰)

  • Lee Byeong-Seon;Jung Jung-Gyu;Lee Chang-Gyu;Koo Bon-Heun;Hayashi Yasunori
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.94-100
    • /
    • 2004
  • We have investigated the magnetic domain structure and the thermal stability of magnetotransport properties of IrMn biased spin-valves containing Co, CoFe and NiFe. The magnetic domain structures were imaged using a magneto-optical indicator film(MOIF) technique. To investigate the thermal stability, magnetoresistance(MR) was measured at annealing temperature(TANN) and room temperature($T_{RT}$) followed by the annealing. Domain imaging reveal that the increase of annealing temperature led to changes in the exchange coupling between the two ferromagnet(FM) layers through nonmagnetic layer rather than between FM and antiferromagnet. unlike the NiFe biased IrMn spin valve with large domains, MOIF pictures of Co and CoFe biased IrMn spin valve structures show the formation of many small microdomains. The magnetic structure, as revealed by the domain images, appeared unchanged while the MR dropped dramatically. From the combined giant magnetoresistance(GMR) and MOIF results, it was apparent that the decrease of MR ratio was not related to the spin valve magnetic structure up to about $350^{\circ}C$($T_{RT}$ ).

A virtual parameter to improve stability properties for an integration method

  • Chang, Shuenn-Yih
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.297-313
    • /
    • 2016
  • A virtual parameter is introduced into the formulation of the previously published integration method to improve its stability properties. It seems that the numerical properties of this integration method are almost unaffected by this parameter except for the stability property. As a result, it can have second order accuracy, explicit formulation and controllable numerical dissipation in addition to the enhanced stability property. In fact, it can have unconditional stability for the system with the instantaneous degree of nonlinearity less than or equal to the specified value of the virtual parameter for the modes of interest for each time step.

Experiments for Amour Stability of Low Crested Structure Covered by Rocks (저 마루높이 구조물의 피복재 안정성 실험: 피복석 피복 조건)

  • Lee, Jong-In;Bae, Il Rho;Moon, Gang Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • In this study, the stability of low crested structure armoured by rock has been investigated using two-dimensional hydraulic model tests. The effect of wave steepness and freeboard on the rock stability on crest, front, and the rear slope has been investigated. Rocks were mostly damaged near the upper part of the seaward slope and the crest of the seaward side. From the experimental data, the new empirical formula for the stability coefficients of the rocks was proposed.

An Analytical Study on the Thermal-Structure Stability Evaluation of Mill-Turn Spindle with Curvic Coupling (커빅 커플링을 적용한 밀-턴 스핀들의 열-구조 안정성 평가에 관한 해석적 연구)

  • Lee, Choon-Man;Jeong, Ho-In
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.100-107
    • /
    • 2020
  • As demand for high value-added products with hard materials increases, the line center is used for producing high value-added products in many industries such as aerospace, automobile fields. The line center is a key device for smart factory automation that can improve the production efficiency and the productivity. Therefore, the development of a mill-turn line center is necessary to produce high value-added products with complex shapes flexibly. In the mill-turn process, a milling process and a turning process are combined. In particular, the turning process needs to increase the rigidity of the spindle. The purpose of this study is to analyze the thermal-structural stability through thermo-structural coupled analysis for a mill-turn spindle with a curvic coupling. The maximum temperature and thermal stability of the spindle were analyzed by thermal distribution. In addition, the thermal deformation and thermal-structural stability of the spindle were analyzed through thermo-structural coupled analysis.

¹H NMR Study of the Effect of G-T Mismatches on Dynamics and Stability of d(GCGTGCGC)₂ and Its Berenil Complex

  • 허성호;홍석주;이조웅;정채준
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.11
    • /
    • pp.1045-1052
    • /
    • 1996
  • The effects of G-T mismatches on thermal stability, the base-pair lifetime and the global structure of a d(GCGTGCGC)2 duplex were studied by using 1H NMR, UV and CD spectroscopy. The existence of G-T mismatches was found to cause a noticeable change in the chemical environment of imino protons associated with significant decrease in the base-pair lifetime at the mismatched site as well as in thermal stability of the duplex itself. The melting transition of d(GCGTGCGC)2 was not cooperative at all at 100 mM or lower concentration of NaCl, but became cooperative at 500 mM or higher NaCl concentration. The melting temperature (Tm) of this duplex was 32℃ at 500 mM concentration of NaCl, which is much lower than that of d(GCGCGCGC)2 at the same NaCl concentration. This suggests that the decrease in stability may be ascribed to the decrease in the base-pair lifetime and the deviation from the normal structure due to the G-T mismatches. Adding berenil to d(GCGTGCGC)2 caused no observable change in the global structure but the large decrease in the base-pair lifetime and the stability of the duplex.

Impact of the Thruster Jet Flow of Ultra-large Container Ships on the Stability of Quay Walls

  • Hwang, Taegeon;Yeom, Gyeong-Seon;Seo, Minjang;Lee, Changmin;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.403-413
    • /
    • 2021
  • As the size of ships increases, the size and output power of their thrusters also increase. When a large ship berths or unberths, the jet flow produced from its thruster has an adverse effect on the stability of quay walls. In this study, we conducted a numerical analysis to examine the impact of the thruster jet flow of a 30,000 TEU container ship, which is expected to be built in the near future, on the stability of a quay wall. In the numerical simulation, we used the fluid-structure interaction analysis technique of LS-DYNA, which is calculated by the overlapping capability using an arbitrary Lagrangian Eulerian formulation and Euler-Lagrange coupling algorithm with an explicit finite element method. As the ship approached the quay wall and the vertical position of the thruster approached the mound of the quay wall, the jet flow directly affected the foot-protection blocks and armor stones. The movement and separation of the foot-protection blocks and armor stones were confirmed in the area affected directly by the thruster jet flow of the container ship. Therefore, the thruster jet flows of ultra-large ships must be considered when planning and designing ports. In addition, the stability of existing port structures must be evaluated.

Case study on stability performance of asymmetric steel arch bridge with inclined arch ribs

  • Hu, Xinke;Xie, Xu;Tang, Zhanzhan;Shen, Yonggang;Wu, Pu;Song, Lianfeng
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.273-288
    • /
    • 2015
  • As one of the most common failure types of arch bridges, stability is one of the critical aspects for the design of arch bridges. Using 3D finite element model in ABAQUS, this paper has studied the stability performance of an arch bridge with inclined arch ribs and hangers, and the analysis also took the effects of geometrical and material nonlinearity into account. The impact of local buckling and residual stress of steel plates on global stability and the applicability of fiber model in stability analysis for steel arch bridges were also investigated. The results demonstrate an excellent stability of the arch bridge because of the transverse constraint provided by transversely-inclined hangers. The distortion of cross section, local buckling and residual stress of ribs has an insignificant effect on the stability of the structure, and the accurate ultimate strength may be obtained from a fiber model analysis. This study also shows that the yielding of the arch ribs has a significant impact on the ultimate capacity of the structure, and the bearing capacity may also be approximately estimated by the initial yield strength of the arch rib.

Dynamic Stability Analysis of an Axially Accelerating Beam Structure (축 방향 가속을 받는 보 구조물의 동적 안정성 해석)

  • Eun, Sung-Jin;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.877-882
    • /
    • 2005
  • Dynamic stability of an axially accelerating beam stucture is investigated in this paper. The equations of motion of a fixed-free beam are derived using the hybrid deformation variable method and the assumed mode method. Unstable regions due to periodical acceleration are obtained by using the Floquet's theory. Stability diagrams are presented to illustrate the influence of the dimensionless acceleration, amplitude, and frequency. Also, buckling occurs when the acceleration exceeds a certain value. It is found that relatively targe unstable regions exist around the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the stability diagram is confirmed by direct numerical integration of the equations of motion.

  • PDF