• Title/Summary/Keyword: Structure Parameter

Search Result 2,435, Processing Time 0.03 seconds

Study on food sources of brown trout(Salmo trutta) and benthic macroinvertebrate community utilized as food sources (브라운송어(Salmo trutta)의 먹이원 분석과 먹이원으로 이용되는 저서성 대형무척추동물 군집에 대한 연구)

  • Jae-Hun Kim;Young-Jin Yun;Dae-Yeul Bae;Hui-Won Roh;Hyeok-Yeong Kwon;Su-Hwan Kim;Kwang-Guk An;Jong-Eun Lee
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.3
    • /
    • pp.345-362
    • /
    • 2024
  • Habitat environment and food sources of fish, benthic macroinvertebrates, and brown trout(Salmo trutta) downstream of Soyang River Dam were analyzed. Water temperature at the site where brown trout was identified ranged from approximately 12.4 to 13.4℃, confirming that this environment could provide an optimal water temperature for the growth of brown trout. Most of the riverbed structures at this site had a high proportion of cobble and pebble substrates. Brown trout constituted less than 5% of the total fish population, more abundant in the upstream. The total length-weight relationship of brown trout showed a parameter b value of 3.234, with the condition factor(K) increasing with length. Dominant benthic macroinvertebrates were Limnodrilus gotoi and Chironomidae spp. (non-red type). Stomach content analysis indicated that brown trout primarily consumed aquatic insects (R.A., 73.8%), non-insects (R.A., 23.3%), ground insects (R.A., 2.7%), and fish (R.A., 0.2%, TL: 246 mm). Correlation analysis revealed a positive relationship between total length and species preferring flowing water(p<0.05) and a negative relationship of total length with species favoring low-flow, sandy habitats (p<0.05). Larger brown trout showed active feeding behavior and resilience to flow speed and riverbed structure. The primary food source for the largest brown trout(TL: 246 mm) was Hypomesus nipponensis. Future analyses should include brown trout with a total length of 30 cm or more. Given that samples were limited, comprehensive population management will require ongoing research.

The Impact of Market Environments on Optimal Channel Strategy Involving an Internet Channel: A Game Theoretic Approach (시장 환경이 인터넷 경로를 포함한 다중 경로 관리에 미치는 영향에 관한 연구: 게임 이론적 접근방법)

  • Yoo, Weon-Sang
    • Journal of Distribution Research
    • /
    • v.16 no.2
    • /
    • pp.119-138
    • /
    • 2011
  • Internet commerce has been growing at a rapid pace for the last decade. Many firms try to reach wider consumer markets by adding the Internet channel to the existing traditional channels. Despite the various benefits of the Internet channel, a significant number of firms failed in managing the new type of channel. Previous studies could not cleary explain these conflicting results associated with the Internet channel. One of the major reasons is most of the previous studies conducted analyses under a specific market condition and claimed that as the impact of Internet channel introduction. Therefore, their results are strongly influenced by the specific market settings. However, firms face various market conditions in the real worlddensity and disutility of using the Internet. The purpose of this study is to investigate the impact of various market environments on a firm's optimal channel strategy by employing a flexible game theory model. We capture various market conditions with consumer density and disutility of using the Internet.

    shows the channel structures analyzed in this study. Before the Internet channel is introduced, a monopoly manufacturer sells its products through an independent physical store. From this structure, the manufacturer could introduce its own Internet channel (MI). The independent physical store could also introduce its own Internet channel and coordinate it with the existing physical store (RI). An independent Internet retailer such as Amazon could enter this market (II). In this case, two types of independent retailers compete with each other. In this model, consumers are uniformly distributed on the two dimensional space. Consumer heterogeneity is captured by a consumer's geographical location (ci) and his disutility of using the Internet channel (${\delta}_{N_i}$).
    shows various market conditions captured by the two consumer heterogeneities.
    (a) illustrates a market with symmetric consumer distributions. The model captures explicitly the asymmetric distributions of consumer disutility in a market as well. In a market like that is represented in
    (c), the average consumer disutility of using an Internet store is relatively smaller than that of using a physical store. For example, this case represents the market in which 1) the product is suitable for Internet transactions (e.g., books) or 2) the level of E-Commerce readiness is high such as in Denmark or Finland. On the other hand, the average consumer disutility when using an Internet store is relatively greater than that of using a physical store in a market like (b). Countries like Ukraine and Bulgaria, or the market for "experience goods" such as shoes, could be examples of this market condition. summarizes the various scenarios of consumer distributions analyzed in this study. The range for disutility of using the Internet (${\delta}_{N_i}$) is held constant, while the range of consumer distribution (${\chi}_i$) varies from -25 to 25, from -50 to 50, from -100 to 100, from -150 to 150, and from -200 to 200.
    summarizes the analysis results. As the average travel cost in a market decreases while the average disutility of Internet use remains the same, average retail price, total quantity sold, physical store profit, monopoly manufacturer profit, and thus, total channel profit increase. On the other hand, the quantity sold through the Internet and the profit of the Internet store decrease with a decreasing average travel cost relative to the average disutility of Internet use. We find that a channel that has an advantage over the other kind of channel serves a larger portion of the market. In a market with a high average travel cost, in which the Internet store has a relative advantage over the physical store, for example, the Internet store becomes a mass-retailer serving a larger portion of the market. This result implies that the Internet becomes a more significant distribution channel in those markets characterized by greater geographical dispersion of buyers, or as consumers become more proficient in Internet usage. The results indicate that the degree of price discrimination also varies depending on the distribution of consumer disutility in a market. The manufacturer in a market in which the average travel cost is higher than the average disutility of using the Internet has a stronger incentive for price discrimination than the manufacturer in a market where the average travel cost is relatively lower. We also find that the manufacturer has a stronger incentive to maintain a high price level when the average travel cost in a market is relatively low. Additionally, the retail competition effect due to Internet channel introduction strengthens as average travel cost in a market decreases. This result indicates that a manufacturer's channel power relative to that of the independent physical retailer becomes stronger with a decreasing average travel cost. This implication is counter-intuitive, because it is widely believed that the negative impact of Internet channel introduction on a competing physical retailer is more significant in a market like Russia, where consumers are more geographically dispersed, than in a market like Hong Kong, that has a condensed geographic distribution of consumers.
    illustrates how this happens. When mangers consider the overall impact of the Internet channel, however, they should consider not only channel power, but also sales volume. When both are considered, the introduction of the Internet channel is revealed as more harmful to a physical retailer in Russia than one in Hong Kong, because the sales volume decrease for a physical store due to Internet channel competition is much greater in Russia than in Hong Kong. The results show that manufacturer is always better off with any type of Internet store introduction. The independent physical store benefits from opening its own Internet store when the average travel cost is higher relative to the disutility of using the Internet. Under an opposite market condition, however, the independent physical retailer could be worse off when it opens its own Internet outlet and coordinates both outlets (RI). This is because the low average travel cost significantly reduces the channel power of the independent physical retailer, further aggravating the already weak channel power caused by myopic inter-channel price coordination. The results implies that channel members and policy makers should explicitly consider the factors determining the relative distributions of both kinds of consumer disutility, when they make a channel decision involving an Internet channel. These factors include the suitability of a product for Internet shopping, the level of E-Commerce readiness of a market, and the degree of geographic dispersion of consumers in a market. Despite the academic contributions and managerial implications, this study is limited in the following ways. First, a series of numerical analyses were conducted to derive equilibrium solutions due to the complex forms of demand functions. In the process, we set up V=100, ${\lambda}$=1, and ${\beta}$=0.01. Future research may change this parameter value set to check the generalizability of this study. Second, the five different scenarios for market conditions were analyzed. Future research could try different sets of parameter ranges. Finally, the model setting allows only one monopoly manufacturer in the market. Accommodating competing multiple manufacturers (brands) would generate more realistic results.

  • PDF
  • Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

    • Kim, Seungsoo;Kim, Jongwoo
      • Journal of Intelligence and Information Systems
      • /
      • v.24 no.2
      • /
      • pp.221-241
      • /
      • 2018
    • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

    Memory Organization for a Fuzzy Controller.

    • Jee, K.D.S.;Poluzzi, R.;Russo, B.
      • Proceedings of the Korean Institute of Intelligent Systems Conference
      • /
      • 1993.06a
      • /
      • pp.1041-1043
      • /
      • 1993
    • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

    • PDF

    Feasibility of Mixed-Energy Partial Arc VMAT Plan with Avoidance Sector for Prostate Cancer (전립선암 방사선치료 시 회피 영역을 적용한 혼합 에너지 VMAT 치료 계획의 평가)

    • Hwang, Se Ha;NA, Kyoung Su;Lee, Je Hee
      • The Journal of Korean Society for Radiation Therapy
      • /
      • v.32
      • /
      • pp.17-29
      • /
      • 2020
    • Purpose: The purpose of this work was to investigate the dosimetric impact of mixed energy partial arc technique on prostate cancer VMAT. Materials and Methods: This study involved prostate only patients planned with 70Gy in 30 fractions to the planning target volume (PTV). Femoral heads, Bladder and Rectum were considered as oragan at risk (OARs). For this study, mixed energy partial arcs (MEPA) were generated with gantry angle set to 180°~230°, 310°~50° for 6MV arc and 130°~50°, 310°~230° for 15MV arc. Each arc set the avoidance sector which is gantry angle 230°~310°, 50°~130° at first arc and 50°~310° at second arc. After that, two plans were summed and were analyzed the dosimetry parameter of each structure such as Maximum dose, Mean dose, D2%, Homogeneity index (HI) and Conformity Index (CI) for PTV and Maximum dose, Mean dose, V70Gy, V50Gy, V30Gy, and V20Gy for OARs and Monitor Unit (MU) with 6MV 1 ARC, 6MV, 10MV, 15MV 2 ARC plan. Results: In MEPA, the maximum dose, mean dose and D2% were lower than 6MV 1 ARC plan(p<0.0005). However, the average difference of maximum dose was 0.24%, 0.39%, 0.60% (p<0.450, 0.321, 0.139) higher than 6MV, 10MV, 15MV 2 ARC plan, respectively and D2% was 0.42%, 0.49%, 0.59% (p<0.073, 0.087, 0.033) higher than compared plans. The average difference of mean dose was 0.09% lower than 10MV 2 ARC plan, but it is 0.27%, 0.12% (p<0.184, 0.521) higher than 6MV 2 ARC, 15MV 2 ARC plan, respectively. HI was 0.064±0.006 which is the lowest value (p<0.005, 0.357, 0.273, 0.801) among the all plans. For CI, there was no significant differences which were 1.12±0.038 in MEPA, 1.12±0.036, 1.11±0.024, 1.11±0.030, 1.12±0.027 in 6MV 1 ARC, 6MV, 10MV, 15MV 2 ARC, respectively. MEPA produced significantly lower rectum dose. Especially, V70Gy, V50Gy, V30Gy, V20Gy were 3.40, 16.79, 37.86, 48.09 that were lower than other plans. For bladder dose, V30Gy, V20Gy were lower than other plans. However, the mean dose of both femoral head were 9.69±2.93, 9.88±2.5 which were 2.8Gy~3.28Gy higher than other plans. The mean MU of MEPA were 19.53% lower than 6MV 1 ARC, 5.7% lower than 10MV 2 ARC respectively. Conclusion: This study for prostate radiotherapy demonstrated that a choice of MEPA VMAT has the potential to minimize doses to OARs and improve homogeneity to PTV at the expense of a moderate increase in maximum and mean dose to the femoral heads.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.