• Title/Summary/Keyword: Structure Learning

Search Result 2,209, Processing Time 0.027 seconds

The Development and Validation of Learning Progression for Solar System Structure Using Multi-tiers Supply Form Items (다층 서답형 문항을 이용한 태양계 구조 학습 발달과정 개발 및 타당성 검증)

  • Oh, Hyunseok;Lee, Kiyoung
    • Journal of the Korean earth science society
    • /
    • v.41 no.3
    • /
    • pp.291-306
    • /
    • 2020
  • In this study, we developed a learning progression for the structure of the solar system using multi-tier supply form items and validated its appropriateness. To this end, by applying Wilson's (2005) construct modeling approach, we set up 'solar system components,' 'size and distance pattern of solar system planets,' and 'solar system modeling' as the progress variables of the learning progression and constructed multi-tier supply form items for each of these variables. The items were applied to 150 fifth graders before and after the classes that dealt with the 'solar system and star' unit. To describe the results of the assessment, the students' responses to each item were categorized into five levels. By analyzing the Wright map that was created by applying the partial credit Rasch model, we validated the appropriateness of the learning progression based on the students' responses. In addition, the validity of the hypothetical pathway that was established in the learning progression was verified by tracking changes in the developmental level of students before and after the classes. The results of the research are as follows. The bottom-up research method that used multi-tier supply form items was able to elaborately set the empirical learning progression for the conceptualization of the structure of the solar system that is taught in elementary school. In addition, the validity of the learning progression was high, and the development of students was found to change with the learning progression.

Mean Teacher Learning Structure Optimization for Semantic Segmentation of Crack Detection (균열 탐지의 의미론적 분할을 위한 Mean Teacher 학습 구조 최적화 )

  • Seungbo Shim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.113-119
    • /
    • 2023
  • Most infrastructure structures were completed during periods of economic growth. The number of infrastructure structures reaching their lifespan is increasing, and the proportion of old structures is gradually increasing. The functions and performance of these structures at the time of design may deteriorate and may even lead to safety accidents. To prevent this repercussion, accurate inspection and appropriate repair are requisite. To this end, demand is increasing for computer vision and deep learning technology to accurately detect even minute cracks. However, deep learning algorithms require a large number of training data. In particular, label images indicating the location of cracks in the image are required. To secure a large number of those label images, a lot of labor and time are consumed. To reduce these costs as well as increase detection accuracy, this study proposed a learning structure based on mean teacher method. This learning structure was trained on a dataset of 900 labeled image dataset and 3000 unlabeled image dataset. The crack detection network model was evaluated on over 300 labeled image dataset, and the detection accuracy recorded a mean intersection over union of 89.23% and an F1 score of 89.12%. Through this experiment, it was confirmed that detection performance was improved compared to supervised learning. It is expected that this proposed method will be used in the future to reduce the cost required to secure label images.

Open set Object Detection combining Multi-branch Tree and ASSL (다중 분기 트리와 ASSL을 결합한 오픈 셋 물체 검출)

  • Shin, Dong-Kyun;Ahmed, Minhaz Uddin;Kim, JinWoo;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.171-177
    • /
    • 2018
  • Recently there are many image datasets which has variety of data class and point to extract general features. But in order to this variety data class and point, deep learning model trained this dataset has not good performance in heterogeneous data feature local area. In this paper, we propose the structure which use sub-category and openset object detection methods to train more robust model, named multi-branch tree using ASSL. By using this structure, we can have more robust object detection deep learning model in heterogeneous data feature environment.

Implementation and Adaption of Web-based Collaborative Learning System to Strengthen Learner's Interaction (학습자간의 상호작용 강화를 위한 웹 기반 협동학습의 구현 및 적용)

  • Suh, Wonseok;Kim, Hyeoncheol;Lee, Wongyu
    • The Journal of Korean Association of Computer Education
    • /
    • v.5 no.4
    • /
    • pp.1-8
    • /
    • 2002
  • With the development of Internet technology, the construction and spread of network environment increased educational adaption and utilization based on World Wide Web. Learners are educated in the competitive, individual, or collaborative learning structure. Among them, competitive and individual educational methods are criticized for bringing about excessive competition and a lack of cooperation. As a new way of educational method, the interest for the collaborative learning structure was increased. In this perspective, we design and implement a web-based collaborative learning system which is adapted the merit and model of collaboration learning and show that the proposed system improves learning achievement and motivation by experimental study on student groups.

  • PDF

Wavelet-like convolutional neural network structure for time-series data classification

  • Park, Seungtae;Jeong, Haedong;Min, Hyungcheol;Lee, Hojin;Lee, Seungchul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.175-183
    • /
    • 2018
  • Time-series data often contain one of the most valuable pieces of information in many fields including manufacturing. Because time-series data are relatively cheap to acquire, they (e.g., vibration signals) have become a crucial part of big data even in manufacturing shop floors. Recently, deep-learning models have shown state-of-art performance for analyzing big data because of their sophisticated structures and considerable computational power. Traditional models for a machinery-monitoring system have highly relied on features selected by human experts. In addition, the representational power of such models fails as the data distribution becomes complicated. On the other hand, deep-learning models automatically select highly abstracted features during the optimization process, and their representational power is better than that of traditional neural network models. However, the applicability of deep-learning models to the field of prognostics and health management (PHM) has not been well investigated yet. This study integrates the "residual fitting" mechanism inherently embedded in the wavelet transform into the convolutional neural network deep-learning structure. As a result, the architecture combines a signal smoother and classification procedures into a single model. Validation results from rotor vibration data demonstrate that our model outperforms all other off-the-shelf feature-based models.

Semi-supervised Multi-view Manifold Discriminant Intact Space Learning

  • Han, Lu;Wu, Fei;Jing, Xiao-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4317-4335
    • /
    • 2018
  • Semi-supervised multi-view latent space learning is gaining considerable popularity recently in many machine learning applications due to the high cost and difficulty to obtain the large amount of label information of data. Although some semi-supervised multi-view latent space learning methods have been presented, there is still much space for improvement: 1) How to learn latent discriminant intact feature representations by employing data of multiple views; 2) How to exploit the manifold structure of both labeled and unlabeled point in the learned latent intact space effectively. To address the above issues, we propose an approach called semi-supervised multi-view manifold discriminant intact space learning ($SM^2DIS$) for image classification in this paper. $SM^2DIS$ aims to seek a manifold discriminant intact space for data of different views by making use of both the discriminant information of labeled data and the manifold structure of both labeled and unlabeled data. Experimental results on MNIST, COIL-20, Multi-PIE, and Caltech-101 databases demonstrate the effectiveness and robustness of our proposed approach.

Optimal Design of Semi-Active Mid-Story Isolation System using Supervised Learning and Reinforcement Learning (지도학습과 강화학습을 이용한 준능동 중간층면진시스템의 최적설계)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.73-80
    • /
    • 2021
  • A mid-story isolation system was proposed for seismic response reduction of high-rise buildings and presented good control performance. Control performance of a mid-story isolation system was enhanced by introducing semi-active control devices into isolation systems. Seismic response reduction capacity of a semi-active mid-story isolation system mainly depends on effect of control algorithm. AI(Artificial Intelligence)-based control algorithm was developed for control of a semi-active mid-story isolation system in this study. For this research, an practical structure of Shiodome Sumitomo building in Japan which has a mid-story isolation system was used as an example structure. An MR (magnetorheological) damper was used to make a semi-active mid-story isolation system in example model. In numerical simulation, seismic response prediction model was generated by one of supervised learning model, i.e. an RNN (Recurrent Neural Network). Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm The numerical simulation results presented that the DQN algorithm can effectively control a semi-active mid-story isolation system resulting in successful reduction of seismic responses.

Reward Design of Reinforcement Learning for Development of Smart Control Algorithm (스마트 제어알고리즘 개발을 위한 강화학습 리워드 설계)

  • Kim, Hyun-Su;Yoon, Ki-Yong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.39-46
    • /
    • 2022
  • Recently, machine learning is widely used to solve optimization problems in various engineering fields. In this study, machine learning is applied to development of a control algorithm for a smart control device for reduction of seismic responses. For this purpose, Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm. A single degree of freedom (SDOF) structure with a smart tuned mass damper (TMD) was used as an example structure. A smart TMD system was composed of MR (magnetorheological) damper instead of passive damper. Reward design of reinforcement learning mainly affects the control performance of the smart TMD. Various hyper-parameters were investigated to optimize the control performance of DQN-based control algorithm. Usually, decrease of the time step for numerical simulation is desirable to increase the accuracy of simulation results. However, the numerical simulation results presented that decrease of the time step for reward calculation might decrease the control performance of DQN-based control algorithm. Therefore, a proper time step for reward calculation should be selected in a DQN training process.

Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning (기계학습을 이용한 염화물 확산계수 예측모델 개발)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

A study on Support System for Standard Korean Language of e-Learning Contents (e-Learning 콘텐츠의 남북한 표준언어 지원시스템 연구)

  • Choi, Sung;Chung, Ji-Moon;Yoo, Gab-Sang
    • Journal of Digital Convergence
    • /
    • v.5 no.2
    • /
    • pp.25-36
    • /
    • 2007
  • In this paper, we studied on the effective structure of an e-Learning Korean Support System for foreigner based on computer systems which is to obey the rules of IMS/AICC International Standard regulations based on LCMS and SCORM. The most important task on this study is to support the function of self-study module through the review of the analysis and results of Korean learning and learning customs. We studied the effective PMS detail modules as well as the Standard Competency Module Management System, which related to LMS/LCMS, Learning an Individual Competency Management System, Competency Registry/Repository System, Knowledge Management System based on Community Competency Module, Education e-survey System and Module learning Support Service System. We suggested one of standard Effective Model of learning Korean Support System which is adopted in a various techniques for foreigner.

  • PDF