• Title/Summary/Keyword: Structure Design

Search Result 17,824, Processing Time 0.039 seconds

Analysis for the Composition Element in Structure of Chairs - Focusing on Milan International Furniture Fair - (의자디자인 구조의 결합 유형에 관한 연구 - 밀라노 국제 가구 박람회를 중심으로 -)

  • Oh, Se-Hwan;Park, Young-Soon
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.6
    • /
    • pp.36-43
    • /
    • 2009
  • Structure is one of the most important components in designing chairs, since a chair should support the weight of users and make them feel comfortable. However, previous studies have focused on examining the materials and the techniques of processing of chairs, but less on studying the structures to facilitate human friendly use enough to influence the change of the current chair design. The purpose of this study is to analyze the composition element in structure of the chair design specifically from 2000 to 2008 the fundamentals to achieve quality chair design. This study examined 386 chairs which the most reputable furniture fair, the Milan International Furniture Fair exhibited from 2000 to 2008. 386 chairs were chosen from 72 companies which passed the popularity and ranks. 24 Components of the structure of chairs were used to annalize the 386 chairs. The structural types of chair design included 51 kinds. Among them, the most representative types appeared to be 5 kinds. Particularly, the single structure chair was comprised of 25%, its productivity has increased steadily since 2004 which indicated that the structure of chair has become simplified. According to the components of chair, classified structure types were analyzed into (1) a single structure consisting of one component, (2) a simple structure with two components, (3) a complex structure with three components, and (4) a multiple structure with four components. The majority of chair types followed the order of the single structure, simple structure, complex structure, and multiple structure. The results of the analysis on the structure of chairs indicated that the structure of chairs has been changed toward single type No. 24 and simple type No. 6+13.

Design Shear Force Reduction Factor of Upper Structure in Seismic Base-isolated System Considering Response Acceleration Decrement Effect (면진구조의 응답가속도 감소효과를 고려한 상부구조의 설계전단력 저감계수)

  • Chen, Hao;Oh, Sang-Hoon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.165-170
    • /
    • 2019
  • The structural damage caused by earthquake to the upper structure of seismic base-isolated system can be suppressed effectively because it is designed to concentrate the input energy on the seismic isolation floor. Further, the response acceleration of seismic base-isolated system can be greatly reduced compared to the seismic structure because of the long period, which means that the design shear force of the seismic base-isolated system can be reduced appropriately. However, when the design shear force is determined to be reduced, the design stiffness will decrease, and the response acceleration will increase oppositely. Therefore, for finding the extent to which the design shear force of the upper structure can be reduced, this paper considered the seismic base-isolated structure as the analytical model and proposed the design shear force reduction factor of the base-isolated structure through the dynamic response analysis, while considering the decrement effect of response acceleration. The research result shows that the response acceleration of the isolated the upper structure can be reduced by 50%~70% of the seismic structure under the same design conditions, and the design shear force can be reduced by up to 40%. By increasing the design stiffness over to 1.8 times of the original design value, the design shear force can be reduced to the same extent as the response acceleration can be reduced compared to the seismic structure.

Optimal design of a portable structure under impact loading (충격부하를 받는 휴대용 구조물의 최적설계)

  • Oh, Deog-Su;Kim, Kwon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.804-809
    • /
    • 2001
  • Optimal design of a portable structure which supports impact loading is presented. The structure requires impact loading capability, stiffness and minimum weight for portability. A collapsible tripod structure with locking mechanism is suggested. Taguchi method has been used to identify the most important design variables and the initial design. Subsequent optimization yields additional weight reduction under stress and displacement constrains.

  • PDF

The Optimized Design Method of Vehicle for Weight-Reduction (무게절감을 위한 차량 최적 설계 기법)

  • Lee, Jeong-Ick
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.376-381
    • /
    • 2007
  • The geometric configuration in the weight-reduced structure is very required to be started from the conceptual design with low cost, high performance and quality. In this point, a structural-topological shape concerned with conceptual design of structure is important. The method used in this paper combines three optimization techniques, where the shape and physical dimensions of the structure and material distribution are hierachically optimized, with the maximum rigidity of structure and lightweight.

Optimal Design System of Grillage Structure under Constraint of Natural Frequency Based on Genetic Algorithm (고유진동수 제한을 갖는 골조구조의 GA 기반 최적설계 시스템)

  • Kim, Sung Chan;Kim, Byung Joo;Kim, E Dam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.39-45
    • /
    • 2022
  • Normal strategy of structure optimization procedure has been minimum cost or weight design. Minimum weight design satisfying an allowable stress has been used for the ship and offshore structure, but minimum cost design could be used for the case of high human cost. Natural frequency analysis and forced vibration one have been used for the strength estimation of marine structures. For the case of high precision experiment facilities in marine field, the structure has normally enough margin in allowable stress aspect and sometimes needs high natural frequency of structure to obtain very high precise experiment results. It is not easy to obtain a structure design with high natural frequency, since the natural frequency depend on the stiffness to mass ratio of the structure and increase of structural stiffness ordinary accompanies the increase of mass. It is further difficult at the grillage structure design using the profiles, because the properties of profiles are not continuous but discrete, and resource of profiles are limited at the design of grillage structure. In this paper, the grillage structure design system under the constraint of high natural frequency is introduced. The design system adopted genetic algorithm to realize optimization procedure and can be used at the design of the experimental facilities of marine field such as a towing carriage, PMM, test frame, measuring frame and rotating arm.

A Development of Data Structure and Mesh Generation Algorithm for Global Ship Analysis Modeling System (선박의 전선해석 모델링 시스템을 위한 자료구조와 요소생성 알고리즘 개발)

  • Kim I.I.;Choi J.H.;Jo H.J.;Suh H.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.61-69
    • /
    • 2005
  • In the global ship structure and vibration analysis, the FE(finite element) analysis model is required in the early design stage before the 3D CAD model is defined. And the analysis model generation process is a time-consuming job and takes much more time than the engineering work itself. In particular, ship structure has too many associated structural members such as stringers, stiffness and girders etc. These structural members should be satisfied as the constraints in analysis modeling. Therefore it is necessary to support generation of analysis model with satisfying these constraints as an automatic manner. For the effective support of the global ship analysis modeling, a method to generate analysis model using initial design information within ship design process, that hull form offset data and compartment data, is developed. In order to easily handle initial design information and FE model information, flexible data structure is proposed. An automatic quadrilateral mesh generation algorithm using initial design information to satisfy the constraints imposed on the ship structure is also proposed. The proposed data structure and mesh generation algorithm are applied for the various type of vessels for the usability test. Through this test, we have verified the stability and usefulness of this system including mesh generation algorithm.

Design Guideline for Press Tool Structure of Ultra-high Strength Steel Part with Shape Optimization Technique (형상최적화 기법을 이용한 초고강도강판 성형용 프레스 금형의 구조설계 가이드라인)

  • Kang, K.H.;Kwak, J.H.;Bae, S.B.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.372-377
    • /
    • 2017
  • In this paper, an effective design procedure was proposed to design the rib of die structure for auto-body member with ultra-high strength steel (UHSS) having ultimate tensile strength (UTS) of 1.5 GPa. From analysis results of the die structure, structural safety of the die was evaluated with information such as displacement and von-Mises stress. It was concluded that the casting part could be designed in order to reduce tool deformation. A design guideline of the die structure was proposed, especially for the rib structure in the casting part with an optimization scheme and local reinforcement concept. Simulation result following the design guideline fully explained that stability of the tool structure could be obtained simultaneously with weight minimization.

MODEL FOR DESIGN MANAGEMENT IN COLLABORATIVE ENVIRONMENT USING DESIGN STRUCTURE MATRIX AND DESIGN PARAMETERS' INFORMATION

  • Salman Akram;Jeonghwan Kim;Jongwon Seo
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1307-1312
    • /
    • 2009
  • Design is an act based on multidisciplinary information. The involvement of various stakeholders makes it difficult to process, plan, and integrate. Iteration is frequent in most of the engineering design and development projects including construction. Design iterations cause rework, and extra efforts are required to get the optimal sequence and to manage the projects. The simple project management techniques are insufficient to fulfill the requirements of integrated design. This paper entails two things: design structure matrix and design parameters' information based model. The emphasis has been given to optimal sequence and crucial iteration using design structure matrix analysis technique. The design projects have been studied using survey data from industry. The optimal sequence and crucial iterations results have been utilized for proposed model. Model integrates two things: information about produced- required key design parameters and information of design changes during the design process. It will help to get familiar with Design management in order to fulfill contemporary needs.

  • PDF