• Title/Summary/Keyword: Structural sealing

Search Result 58, Processing Time 0.025 seconds

A Study on Deformation Behavior of Thrust Cut Off System under High Pressure (고압하 추력중단장치의 변형거동 연구)

  • Park Sung-Han;Chang Hong-Been;Lee Hwan-Gyu;Kang Moon-Jung;Kim Jae-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.89-95
    • /
    • 2005
  • Thrust cut off(TCO) system is installed at the port of a rocket motor case forward dome. The snap ring and the closure are escaped sequentially by pulling out a wedge under internal pressure. The hydraulic structural tests of TCO and numerical simulations were performed, and both results were compared to understand the deformation behavior of TCO. By increasing splines symmetrically, the sealing capacity of TCO can be improved significantly. The escape pressure of TCO increases according to the increase of friction coefficient and there is a critical friction coefficient beyond which the snap ring can not be nearly escaped even after forced escape of wedge. Under low friction coefficient the snap ring is contracted to radial direction and easily escaped. But, under high friction coefficient, the snap ring can not be escaped from the port even after severe plastic deformation.

Feasibility of UHPC shields in spent fuel vertical concrete cask to resist accidental drop impact

  • P.C. Jia;H. Wu;L.L. Ma;Q. Peng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4146-4158
    • /
    • 2022
  • Ultra-high performance concrete (UHPC) has been widely utilized in military and civil protective structures to resist intensive loadings attributed to its excellent properties, e.g., high tensile/compressive strength, high dynamic toughness and impact resistance. At present, aiming to improve the defects of the traditional vertical concrete cask (VCC), i.e., the external storage facility of spent fuel, with normal strength concrete (NSC) shield, e.g., heavy weight and difficult to fabricate/transform, the feasibility of UHPC applied in the shield of VCC is numerically examined considering its high radiation and corrosion resistance. Firstly, the finite element (FE) analyses approach and material model parameters of NSC and UHPC are verified based on the 1/3 scaled VCC tip-over test and drop hammer test on UHPC members, respectively. Then, the refined FE model of prototypical VCC is established and utilized to examine its dynamic behaviors and damage distribution in accidental tip-over and end-drop events, in which the various influential factors, e.g., UHPC shield thickness, concrete ground thickness, and sealing methods of steel container are considered. In conclusion, by quantitatively evaluating the safety of VCC in terms of the shield damage and vibrations, it is found that adopting the 300 mm-thick UHPC shield instead of the conventional 650 mm-thick NSC shield can reduce about 1/3 of the total weight of VCC, i.e., about 50 t, and 37% floor space, as well as guarantee the structural integrity of VCC during the accidental drop simultaneously. Besides, based on the parametric analyses, the thickness of concrete ground in the VCC storage site is recommended as less than 500 mm, and the welded connection is recommended for the sealing method of steel containers.

Investigating the Tensile-Shear of Dissimilar Materials Joined Using the Hybrid SPR Technique (Hybrid SPR 접합을 적용한 이종소재 인장전단에 관한 연구)

  • Yu, Kwan-jong;Choi, Du-bok;Kim, Jae-yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.33-39
    • /
    • 2020
  • Self-piercing rivets are often used in the automotive industry, among other industries, as mechanical components to join multiple materials such as aluminum alloys. Self-piercing rivets have a strong sealing property, although there is considerable scope for their performance improvement. In this study, to enhance the performance of self-piercing rivets, the hybrid self-piercing riveting (SPR) technique, using the existing SPR and structural adhesive, was proposed. Moreover, heterogeneous material specimens subjected to the hybrid SPR technique were manufactured and tested. The joint strength of the test pieces of different materials was evaluated through finite element analyses.

Fatigue Damage Behavior in TIG Welded Joint of F82H Steel under Low Cycle Fatigue Loading (저주기 피로부하에서 F82H 강 TIG 용접 접합부의 피로손상거동)

  • Kim, Dong-Hyun;Park, Ki-Won
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.42-48
    • /
    • 2015
  • Reduced activation ferritic/martensitic steels are recognized as the primary candidate structural materials for fusion blanket systems. Welding is an inevitable for breeding blanket for pressure tightness and radioisotope confinement. Especially, TIG welding was chosen for sealing because it has the largest gap allowance compared to the other welding methods, and its properties are controllable by feed wire and welding conditions. In this study, the low cycle fatigue test using two-type gage such as extensometer and strain gage was applied to the TIG welded joint of F82H steel, for evaluating fatigue damage accumulation behavior of the HAZs. As the result, the over-tempered HAZ have shown a higher fatigue damage accumulation compared with other materials at all the testing conditions.

Vibration Characteristics and its Countermeasure of Orifice Pipe for Reduction Gear Lubrication of Azimuth Thruster (아지무스 추진기의 감속 기어 윤활용 오리피스 파이프 진동특성과 방진대책)

  • Eam, Gitak;Barro, Ronald D.;Lee, Donchool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.555-558
    • /
    • 2013
  • A type of electric propulsion employed by specialized purpose vessels or offshore is the azimuth thruster. Azimuth thruster application had been increasing recently and resulted to excellent vessel maneuverability. However, this system is very complex and some of its major component being exposed under the seawater level presents difficulty in sealing design. For Polar class icebreaker operating in extreme sea condition, this requires a high level of reliability and safety. In this study, the characteristics of lubricating orifice pipe structural vibration installed at the lower reduction gear were investigated and analyzed through beam analysis theory and comparison of experiments. Propeller excitation and the resonant modes of vibration causing excessive vibration and suitable countermeasures to prevent damage due to vibration fatigue on the pipe are presented.

  • PDF

Three-Dimensional Contact Stress Analysis for Structural Design of Bolted Joint Assembly of Pressure Vessels in Nuclear Power Plants (원자력 발전소용 압력용기의 볼트 연결 조립부 구조설계를 위한 3차원 접촉 응력 해석)

  • Lee, Boo-Youn;Kim, Tae-Woan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.122-128
    • /
    • 1999
  • Bolted joint assembly for nuclear power plants consists of various components : cover plate, retainer plate, manway flange, gasket and stud bolts/nuts. To guarantee the soundness of the joint, it is important to prevent leakage through the gasket and reduce the stress concentration factor at the thread root. In this paper, Submodeling technique for the finite element method is proposed to accurately compute three dimensional contact stresses which govern the sealing performance and the maximum contact stresses at the threads root. For verification of global solutions used as boundary conditions of submodel solution, the stresses on the cover plate and the manway flange are measured by strain gages when internal pressure is applied to the bolted joint assembly. The numerical results are compared with the experimental results.

  • PDF

Experimental Study of the Joint Movement Responsiveness Performance to the One-Component Silicon Sealants at Curing Phase (경화단계에서의 1성분형 실리콘 실란트의 거동대응성능에 관한 실험적 연구)

  • Son, Jong-Won;Ono, Tadashi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.63-64
    • /
    • 2014
  • In this study, we has a purpose to estimate the joint movement responsiveness performance for the domestic products of one-component structural silicon sealants. For this purpose, we make a comparative study for the four domestic products focused on tensile properties after allowed the cyclic-movements for three days at initial step of curing phase. A joint movement range ±10% and the rate of compression and extension 3.2mm/h were assumed in those tests. As a result, the large space were induced inside the sealant by rupture, and then adhesion and cohesion failures were caused by stress concentration. The tensile properties were reduced by 15~60% in comparison with physical properties. In this case, the generating defect was caused and the service-life was decreased. Thus, further researches as relationship of test condition and products properties on this behavior would be studied.

  • PDF

Antifungal Durability Evaluation of Sanitary Sealant (방균실란트의 방균지속성 평가)

  • Seo, YeonWon;Jung, Jin-young;Ahn, Myung-Su;Kim, Sung Hyun;Bae, Keesun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.65-67
    • /
    • 2014
  • There are many elastomeric joint sealant applications in construction such as structural glazing, weatherproofing and insulating glass fabrication etc. Each sealant joints require unique durability functions to perform well through building life cycle. Elastomeric joints in bathroom and kitchen is one of areas which require durable sealing. In this application, anti fungal durability is proprietary function of sealant during building life cycle. Premature failure of anti fungus resistance of sealant is putting big stresses to general contractor as well as the inhabitants due to costly rework and poor sanitation. Accordingly, when chemists design a product, they must take into account various parameters not only formulation components also test conditions in order to have long term fungal durability. This paper reviews several biocide options with various industry standards for fungus resistance performance to suggest making new test method for construction sealant industry.

  • PDF

Numerical evaluation of hypothetical core disruptive accident in full-scale model of sodium-cooled fast reactor

  • Guo, Zhihong;Chen, Xiaodong;Hu, Guoqing
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2120-2134
    • /
    • 2022
  • A hypothetical core destructive accident (HCDA) has received widespread attention as one of the most serious accidents in sodium-cooled fast reactors. This study combined recent advantages in numerical methods to realize realistic modeling of the complex fluid-structure interactions during HCDAs in a full-scale sodium-cooled fast reactor. The multi-material arbitrary Lagrangian-Eulerian method is used to describe the fluid-structure interactions inside the container. Both the structural deformations and plug rises occurring during HCDAs are evaluated. Two levels of expansion energy are considered with two different reactor models. The simulation results show that the container remains intact during an accident with small deformations. The plug on the top of the container rises to an acceptable level after the sealing between the it and its support is destroyed. The methodology established in this study provides a reliable approach for evaluating the safety feature of a container design.

Topology, Shape and Sizing Optimization of the Jig Supporting High Voltage Pothead (고전압 장비 지그의 동특성에 대한 위상, 형상 및 치수 최적화)

  • Choi, Bong-Kyun;Lee, Jae-Hwan;Kim, Young-Joong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.351-358
    • /
    • 2013
  • In the electric power supplying industry, outdoor sealing end (pothead) is used and sometimes it is necessary to check the seismic qualification analysis or test which is intended to demonstrate that the equipment have adequate integrity to withstand stress of the specified seismic event and still performs their function. And since the pothead is mounted on the supporting jig, the avoidance of resonance between the pothead and jig is required. In order to design jig, three types of optimization are performed to get the minimum weight while satisfying the natural frequency constraint using ANSYS. Optimal array, position and thickness of truss members of the jig are obtained through topology, shape and sizing optimization process, respectively. And seismic analysis of the pothead on the jig for given RRS acceleration computes the displacement and stress of the pothead which shows the safety of the pothead. The obtained natural frequency, mass, and member thickness of the jig are compared with those of the reference jig which was used for seismic experimental test. The numerical results of the jig in the research is more optimized than the jig used in the experimental test.