• Title/Summary/Keyword: Structural safety standard

Search Result 293, Processing Time 0.028 seconds

A Proposal of Minimum Steel Ratio Considering Size Effect for Flexural Reinforced Concrete Member (크기효과가 고려된 철근콘크리트 휨 부재의 최소철근비 제안)

  • Yoo, Sung-Won;Her, Yoon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.128-136
    • /
    • 2010
  • In according with concrete structural design standard, it is common designing flexure reinforcement concrete to induce tension failure. So reinforcing ratio is limited to inducing tension failure. And maximum reinforcing ratio is regulated to protecting concrete compression strength caused by over reinforced building. Minimum reinforcing ratio is also limited in designing standard to protecting brittle failure as extremely using less reinforcing bar. But in minimum reinforcing ratio it is extremely conservative or it is sometimes impossible to induce stable tension-failure because they are depending on yield failure and experienced method and concrete designing standard strength. Therefore the purpose of the present paper is to evaluate the flexural behavior of minimum steel ratio of reinforced concrete of beams and to propose the guide-line of equation of minimum steel ratio by performing static flexural test of 16 beams according to size effect, number of steel, yielding stress of steel, and concrete compressive strength which are presumed effective variables. From experimental results, the equation of minimum steel ratio was newly proposed considered size effect.

A Study on the Improvement of Performance Standard and Classification for the Firestop Accreditation System (내화충전구조 인정제도의 성능기준 및 등급분류 개선에 관한 연구)

  • Lee, H.D.;Choi, Y.J.;An, J.H.;Jeong, A.Y.;Seo, H.W.;Park, Jin O
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.32-39
    • /
    • 2020
  • The fire compartments with fire-resistant construction are installed in the principal structural parts of a building in order to reduce damage in the event of a building fire. As a fire may spread through a crack in the fire compartment, the firestop with secured performance is used according to the procedure, methods, and standards specified in the detailed operation guideline. According to the current detailed operation guideline, vertical members (wall penetration) and horizontal members (floor penetration) are classified into different categories respective to each other for the classification of the firestop. Therefore, an accreditation applicant must apply for the performance test for each structure even if the wall and the floor have the same structure. Also, Grade T is used for the firestop that penetrates the fire compartment. However, in the case of foreign countries, the use of Grade F for the firestop is allowed even if it penetrates the fire compartment. The result of the precedent studies also showed that there was a significantly low possibility of fire to spread even if Grade F was applied for a metallic duct that penetrated the fire compartment. In this study, the improved scheme for the classification and performance standard of firestops was presented by analyzing the results of precedent studies regarding the firestop and domestic and overseas firestop qualification systems.

The experimental study on productivity increase of the permanent form (비탈형 영구거푸집의 생산성 향상을 위한 실험적 연구)

  • 김용성;서동훈;강병훈;김우재;김성식;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.751-756
    • /
    • 2001
  • Permanent-Form is one of system forms for reducing human labor, work costs, oscillation, noise, construction wastes and so on. Permanent-Form is made from precast method in facilities. and carried in construction site to assemble with no demolding. The biggest expense to produce Permanent-Form is about manufacturing mold. To satisfy various size of building member, the same number of manufacturing mold is needed. In this paper, studied about manufacturing mold module for acquiring economic merit and construction member safety. Permanent-Form is member stress and structural analyzed if temporary equipment were used. The result of this study is below. (1) Column sizes of Permanent-Form are 47 kinds of prototype that based on Modular coordination's basic module. 4 pieces or 6 pieces are composed basically. (2) For beam size modular coordination, standard height and width of beam are 150mm and 100mm. It brings 24 kinds of prototype. 4 pieces or 5 pieces are composed basically. (3) Structural analysis value of modular member is like this Column member shows 9.4 to 85kgf/$cm^{2}$ stress distribution and beam member shows 6.3 to 95kgf/$cm^{2}$ stress distribution. Constructing permanent form could have structural safety with use of temporary equipment

  • PDF

SEISMIC ISOLATION OF NUCLEAR POWER PLANTS

  • Whittaker, Andrew S.;Kumar, Manish;Kumar, Manish
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.569-580
    • /
    • 2014
  • Seismic isolation is a viable strategy for protecting safety-related nuclear structures from the effects of moderate to severe earthquake shaking. Although seismic isolation has been deployed in nuclear structures in France and South Africa, it has not seen widespread use because of limited new build nuclear construction in the past 30 years and a lack of guidelines, codes and standards for the analysis, design and construction of isolation systems specific to nuclear structures. The funding by the United States Nuclear Regulatory Commission of a research project to the Lawrence Berkeley National Laboratory and MCEER/University at Buffalo facilitated the writing of a soon-to-be-published NUREG on seismic isolation. Funding of MCEER by the National Science Foundation led to research products that provide the technical basis for a new section in ASCE Standard 4 on the seismic isolation of safety-related nuclear facilities. The performance expectations identified in the NUREG and ASCE 4 for seismic isolation systems, and superstructures and substructures are described in the paper. Robust numerical models capable of capturing isolator behaviors under extreme loadings, which have been verified and validated following ASME protocols, and implemented in the open source code OpenSees, are introduced.

The Analysis of Current Situation of the Building Precision Safety Inspection and Precision Safety Diagnosis Cost from Practitioners Viewpoint (실무자 관점에서의 건축물 정밀안전점검 및 정밀안전진단 실행대가 현황분석)

  • Lee, Jong-Phil;Lim, Nam-Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.37-41
    • /
    • 2018
  • Recently, interest in the safety and maintenance of the structures is growing. However, due to the low-cost order placed by the ordering organization, the safety diagnosis specialized institution becomes insolvent and many problems have arisen due to insufficient inspection and diagnosis. Therefore, in this study, the current status of bid cost was examined through the survey of the practitioners and case analysis. As a result, Precision safety inspection is deemed that it is necessary to increase the efficiency of the criteria cost and to strengthen the rigidity of the criteria cost rather than adjusting the criteria cost. Precision safety diagnosis, the criteria cost for structures with a floor area of less than $10,000m^2$ is lowered to 80 % from the current standard. For structures larger than that, the current criteria cost are applied, but it is deemed necessary to strengthen the rigidity of the criteria cost.

Systematic Improvement of Safety Management-Related Laws in Domestic Demolition Works (국내 해체공사 안전관리 관련 법령의 체계적인 개선방안)

  • Ha, Gee-Joo;Ha, Jae-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.169-178
    • /
    • 2010
  • Generally speaking, the demolition works is the subsequent construction activity which has been done after building life-span of twenty two years or so. However, it was not prepared suitable systems and laws and regulations as long-term solutions. In this study, it was suggested the improvement guideline of safety management-related laws in domestic demolition works. The three improvement of laws was suggested as follows. ${\bullet}$ First, it was suggested proposals for demolition works standards in safety management plan of management law for construction activity. ${\bullet}$ Secondly, it was provided improvements for standard safety work guide of demolition works of industrial safety and health law. ${\bullet}$ Third, it was proposed integration method of redundancy in safety management plan and risk assessment regulations.

Development of the Vertical Ladder using a High-Strength Aluminium Alloys (6082-T6) (고강도 알루미늄 합금을 적용한 수직 사다리 개발 연구)

  • Kim, Jae-hyeong;Seo, Kwang-Cheol;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.698-705
    • /
    • 2020
  • In this study, an improved aluminum alloy (6082-T6) was used to develop a unique model of an aluminum ladder for usage in offshore plant. The structural strength design was carried out in accordance with international standards such as ISO, NORSOK Austria Standard. Load combination was performed to satisfy all conditions. The structural safety of the designed model was verified using SACS, an analysis program for offshore plants based on the Finite elements method. The analysis results confirmed that both stress and deflection were satisfied within the acceptance criteria. The developed model can be applied used in various fields in the near future as it meets all the necessary criteria and is lightweight and has improved productivity.

A Dynamic Analysis of Rotations at the center of Vehicle Running High Speed KTX Train on the PSC Box Bridges (PSC 교량 위를 고속주행 중인 KTX 전동차의 중심회전각 동적해석)

  • Oh, Soon-Tack;Lee, Dong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • A dynamic analysis is carried out to provide an evaluation method of running safety for a PSC box bridge located on the Gyung-Bu high speed railway. The numerical models of bridge and train vehicle are developed in detail with corresponding interaction system. Three dimensional skeleton element model of PSC box bridge and 38-degree-of-freedom of vehicle are adopted from the existing properties of KTX bridge and train vehicle. Analysed three direction rotations of vehicle on the bridge and ground tracks are compared for running speeds up to 500 km/h with 10 km/h constant increments. The comparison of the rotations will be an improved evaluation method of Running Safety in stead of the existing standard method.

Shake table tests on a non-seismically detailed RC frame structure

  • Sharma, Akanshu;Reddy, G.R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.1-24
    • /
    • 2012
  • A reinforced concrete (RC) framed structure detailed according to non-seismic detailing provisions as per Indian Standard was tested on shake table under dynamic loads. The structure had 3 main storeys and an additional storey to simulate the footing to plinth level. In plan the structure was symmetric with 2 bays in each direction. In order to optimize the information obtained from the tests, tests were planned in three different stages. In the first stage, tests were done with masonry infill panels in one direction to obtain information on the stiffness increase due to addition of infill panels. In second stage, the infills were removed and tests were conducted on the structure without and with tuned liquid dampers (TLD) on the roof of the structure to investigate the effect of TLD on seismic response of the structure. In the third stage, tests were conducted on bare frame structure under biaxial time histories with gradually increasing peak ground acceleration (PGA) till failure. The simulated earthquakes represented low, moderate and severe seismic ground motions. The effects of masonry infill panels on dynamic characteristics of the structure, effectiveness of TLD in reducing the seismic response of structure and the failure patterns of non-seismically detailed structures, are clearly brought out. Details of design and similitude are also discussed.

A Fatigue Analysis Study on the Fractured Fixing Bolts of Mobile Elevated Work Platforms (고소작업대의 파손된 고정볼트의 피로분석에 관한 연구)

  • Choi, Dong Hoon;Kim, Jae Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • The mobile elevated work platforms(MEWPs) consist of work platform, extending structure, and car, and it is a facility to move persons to working positions. MEWPs are useful but composed complex pieces of equipments, and accidents are caused by equipment defects. Among them, accidents caused by fracture of the bolts fixing the extension structure and the turntable are increasing. In this study, fatigue failure and fatigue life of a turntable fixing bolt subjected to irregular fatigue load were analyzed by FEA. For this purpose, finite element modeling is proposed and structural analysis and fatigue analysis are performed simultaneously for fixing bolts. As a result of the structural analysis, it was confirmed that there is no risk of permanent deformation because the maximum stress acting on the fixing bolt is lower than the yield strength, and fatigue analysis was confirmed that the fatigue life is less than the design standard. The fatigue analysis results of this study can be effectively used for the design and the documentary assessment of the safety certification of the MEWPs by examining the fatigue life of the turntable fixing bolt.