• Title/Summary/Keyword: Structural properties

Search Result 7,473, Processing Time 0.039 seconds

Fatigue Behavior of Composites with different Fiber Orientation (섬유 방향에 따른 복합재 피로특성에 관한 연구)

  • Kang, Tae-Young;An, Hyo-Seong;Chun, Heoung-Jae;Park, Jong-Chan
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.77-81
    • /
    • 2021
  • Due to the high specific strength and stiffness of the composite materials, the composite materials have been extensively used in various industries. In particular, carbon fiber reinforced composites are widely used in many mechanical structures. In addition, since carbon fiber reinforced composites have anisotropic properties, to understand the fatigue behavior of composites with different fiber orientation is very important for the efficient structural design. Therefore, in this paper, the effect fiber orientation on the fatigue life of composite materials was experimentally evaluated. For this purpose, tensile and fatigue tests were performed on the off-axis specimens (0°, 10°, 30°, 45°, 60°, 90°) of the composite materials. As a result of the fatigue tests, the fatigue strength of the composites decreased significantly as the fatigue strength slightly deviated from 0 degrees. On the other hand, the more deviated, the less decreased. This is because the role of supporting the load of fibers decreased as the stacking angle increased. In addition, the fatigue behavior was analyzed by introducing a fatigue strength ratio (Ψ) that eliminates the fiber orientation dependence of the off-axis fatigue behaviors on the unidirectional composites. The off-axis fatigue S-N lines can be reduced to a single line regardless of the fiber orientation by using the fatigue strength ratio (Ψ). Using the fatigue Ψ-N line, it is possible to extract back to any off-axis fatigue S-N lines of the composites with different fiber orientations.

Growth of Ga2O3 films on 4H-SiC substrates by metal organic chemical vapor deposition and their characteristics depend on crystal phase (유기 금속 화학 증착법(MOCVD)으로 4H-SiC 기판에 성장한 Ga2O3 박막과 결정 상에 따른 특성)

  • Kim, So Yoon;Lee, Jung Bok;Ahn, Hyung Soo;Kim, Kyung Hwa;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.149-153
    • /
    • 2021
  • ε-Ga2O3 thin films were grown on 4H-SiC substrates by metal organic chemical vapor deposition (MOCVD) and crystalline quality were evaluated depend on growth conditions. It was found that the best conditions of the ε-Ga2O3 were grown at a growth temperature of 665℃ and an oxygen flow rate of 200 sccm. Two-dimensional growth was completed after the merge of hexagonal nuclei, and the arrangement direction of hexagonal nuclei was closely related to the crystal direction of the substrate. However, it was confirmed that crystal structure of the ε-Ga2O3 had an orthorhombic rather than hexagonal. Crystal phase transformation was performed by thermal treatment. And a β-Ga2O3 thin film was grown directly on 4H-SiC for the comparison to the phase transformed β-Ga2O3 thin film. The phase transformed β-Ga2O3 film showed better crystal quality than directly grown one.

Numerical Analytic Study considering the Behavior Characteristics between Individual Blocks in Block-Type Retaining Walls (블록식 보강토 옹벽에서 개별 블록간 거동특성을 고려한 수치해석적 연구)

  • Hwang, Sungpil;Park, Byungsuk;Woo, Yong-Hoon;Park, Sangki;Kim, Wooseok
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.579-588
    • /
    • 2021
  • Reinforced earth retaining walls have been widely used in recent years, as they are superior from the landscape perspective than normal concrete retaining walls. However, as reinforced earth retaining walls are made of various materials depending on site, existing design methods cannot secure stability, and a variety of problems have occurred. Studies on the design and stability analysis methods, which are different from existing methods, have been conducted to address these problems. This study conducted a stability investigation using numerical analysis, and blocks of reinforced earth retaining walls were individually applied, which is different from pre-existing numerical analyses. To verify the input values of the numerical analysis when applying individual blocks, real-scale experiments of the friction characteristics between the blocks and the connection properties between the blocks and stiffener were conducted. The applicability of the block conditions, which were the same as those of real sites, was verified through numerical analysis, and will be used for the stability review and design of various combinations of blocks and stiffeners.

Comparison of Laboratory Tests Applied for Diagnosing the SARS-CoV-2 Infection (SARS-CoV-2 감염의 진단에 이용되는 검사실 테스트의 비교)

  • Lee, Chang-Gun;Lee, Dongsup
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.2
    • /
    • pp.79-94
    • /
    • 2022
  • Due to the highly contagious nature and severity of the respiratory diseases caused by COVID-19, economical and accurate tests are required to better monitor and prevent the spread of this contagion. As the structural and molecular properties of SARS-CoV-2 were being revealed during the early stage of the COVID-19 pandemic, many manufacturers of COVID-19 diagnostic kits actively invested in the design, development, validation, verification, and implementation of diagnostic tests. Currently, diagnostic tests for SARS-CoV-2 are the most widely used and validated techniques for rapid antigen, and immuno-serological assays for specific IgG and IgM antibody tests and molecular diagnostic tests. Molecular diagnostic assays are the gold standard for direct detection of viral RNA in individuals suspected to be infected with SARS-CoV-2. Antibody-based serological tests are indirect tests applied to determine COVID-19 prevalence in the community and identify individuals who have obtained immunity. In the future, it is necessary to explore technical problems encountered in the early stages of global or regional outbreaks of pandemics and provide future directions for better diagnostic tests. This article evaluates the commercially available and FDA-approved molecular and immunological diagnostic assays and analyzes their performance characteristics.

Structural and Photocatalytic Properties of TiO2 Thin Film Coated Glass Beads (유리알에 코팅된 TiO2 박막의 구조 및 광촉매 특성)

  • Ji Eun, Jeong;Chang-Yong, Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.30-35
    • /
    • 2023
  • The glass bead surface was coated using a TiO2 sol, after which dry-treated (TB) and calcined (TBc) samples were prepared. Photocatalytic degradation of methylene blue and toluene, as well as characterization of the TiO2 thin films, were carried out. The TiO2 thin film of the TB sample had the same shape as the sponge foam, according to FE-SEM, XPS, and FTIR analyses, and contained both amorphous and crystalline TiO2. On the other hand, crystalline TiO2 was mainly present in the TiO2 thin film of the TBc sample, and needle-shaped particles and tiny ones were mixed. The adsorption capacity for methylene blue and the degradation rate of the TBc sample were less than 10 % compared with those of the TB sample, and the adsorption capacity and degradation rate of the TBc sample decreased similarly as the amount of TiO2 coating increased. The amount of toluene adsorption for the TBc sample (46 mg/g) was smaller than that of the TB sample with the same coating amount, but the degradation rate was similar. In the case of the TB sample, the degradation rate for toluene decreased less than the adsorption capacity as the amount of TiO2 coating increased. This result is considered to be because, in the non-calcined TB sample, the active site reduction of the crystalline particles occurred less and the specific surface area of the amorphous texture decreased as the amount of TiO2 coating increased.

The Effect of Structure and Acidity of Fluorinated HZSM-5 on Ethylene Aromatization (불소화 HZSM-5의 구조 및 산도가 에틸렌 방향족화에 미치는 영향)

  • Kyeong Nan, Kim;Seok Chang, Kang;Geunjae, Kwak
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.15-22
    • /
    • 2023
  • Recent studies have actively investigated ways to improve the economic feasibility and efficiency of the Fischer-Tropsch process by increasing the yields of the monocyclic aromatic compounds (BTEX). In this study, ethylene was selected as a model of F-T-derived hydrocarbons, and the ethylene-to-aromatics (ETA) reaction was investigated according to changes in acid characteristics, mesopores, and crystallinity of HZSM-5 (HZ5). Fluorinated HZ5 was prepared by calcination followed by impregnation of an aqueous NH4F solution having different molar concentrations in HZ5, and the structural and chemical properties of F/HZ5 were investigated through Brunauer-Emmett-Teller (BET), solid-state nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), NH3-temperature-programmed desorption (TPD), and pyridine-IR spectroscopy. The ETA reactions were performed at 673 K under 0.1 MPa, and fluorinating HZ5 by an aqueous NH4F solution of 0.17 M improved ethylene conversion, BTEX selectivity, and catalytic stability due to acidity, mesopore fraction, and crystallinity.

Analysis of Photovoltaic Performance Improvement of Cu2Zn1-xCdxSn(SxSe1-x)4 Thin Film Solar Cells by Controlling Cd2+ Element Alloying Time Using CBD Method (CBD 공법을 이용하여 Cd2+ 원소 Alloying 시간을 조절한 Cu2Zn1-xCdxSn(SxSe1-x)4 박막 태양전지의 광전지 성능 향상 분석)

  • Sang Woo, Park;Suyoung, Jang;Jun Sung, Jang;Jin Hyeok, Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.481-488
    • /
    • 2022
  • The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.

A Study on Area-Wide Integrated Termite Management for the Preservation of Wooden Built Heritage (목조건축문화재의 예방 보존을 위한 공간적 통합 흰개미 관리(AW-ITM)의 적용)

  • KIM, Sihyun;CHUNG, Yongjae
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.3
    • /
    • pp.60-72
    • /
    • 2022
  • A number of wooden built heritage remain in Korea, and most have been damaged by various biological factors including termite. Owing to the irreversible damage caused by termites, wooden built heritage are losing their authenticity and structural stability. In this study, Area-Wide Integrated Termite Management(AW-ITM) was proposed to prevent termite damage. First, to understand the locational characteristics of these sites, the distance from adjacent forests and surrounding forest areas was analyzed for 182 national designated wooden built heritage(national treasures, treasures) using the Geographic Information System(GIS). By analyzing existing pest control projects(2003-2020) and the components of the ITM, the characteristics of termite control for cultural heritages were determined. Based on these results, the cultural heritage sites and their surrounding spaces were divided into three areas, and the types of cultural properties were divided into six types according to the location and number of buildings. Along with this, termite control measures were proposed for each area and type. The concept of AW-ITM has been partially applied to the "Comprehensive Control of Termites in wooden built heritages Sites" by the Cultural Heritage Administration. Caution must be taken with regard to the establishment of a cultural heritage management policy; AW-ITM should be applied on a trial basis with the results then being carefully analyzed and reflected in the establishment of policies pertaining to the conservation management of cultural heritage.

Plant-derived Anti-HIV Natural Products: A Review of Recent Research (천연물의 항 HIV 효능에 대한 최신 연구동향)

  • Karadeniz, Fatih;Oh, Jung Hwan
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.734-741
    • /
    • 2022
  • Currently, around 40 million people worldwide are living with human immunodeficiency virus (HIV) infection making HIV a critical global health risk. Present therapies for HIV infection consist of drug cocktails that target different steps of the HIV life cycle to prevent infection, replication, and release of the virus. Due to its mutating nature, drug resistance coupled with side-effects of long-term drug use, novel strategies, and pharmaceuticals to treat and manage HIV infection are constant needs and continuously being studied. Plants allocate a major repertoire of chemical diversity and are therefore regarded as an important source of new bioactive agents that can be utilized against HIV. Since the early 1990s, upon recommendations of the World Health Organization, numerous studies reported phytochemicals from different structural classes such as flavonoids, coumarins, tannins and terpenes with strong inhibitory effects against HIV infection. The present review gathered and presented recent research (2021-present) on plant extracts and phytochemicals that exhibit anti-HIV properties with the aim of providing insights into future studies where ethnomedical and underutilized plant sources may yield important natural products against HIV. Considering the relation and importance of HIV treatment with current viral infection risks such as SARS-CoV-2, screening plants for anti-HIV agents is an important step towards the discovery of novel antivirals.

Ecological Characteristic of Warm Temperate Vegetation Distributed around Hakdong and Haegeumgang at Geojae Island (거제도 학동 및 해금강 일대에 분포하는 난대림 식생의 생태적 특성 연구)

  • Lee, Soo-Dong
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.1
    • /
    • pp.72-86
    • /
    • 2022
  • This study was conducted to identify structural characteristics of the evergreen broad-leaved forests distributed in Hak-dong, Geojae island. For a survey, 52 sites were set up in areas with changes in the vegetation community or location environment where Cinnamomum yabunikkei, Neolitsea sericea, and Machilus thunbergii dominated or appeared in the canopy, sub-canopy, or shrub layer. The community classification with TWINSPAN identified the following communities: N. sericea-C. yabunikkei, C. yabunikkei-Camellia japonica, Ca. japonica, Quercus variabilis-Ca. japonica, Pinus thunbergii-Ca. japonica, Castanopsis sieboldii, P. thunbergii, and Platycarya strobilacea-Mallotus japonicus. Considering the result of the study that succession series of warm-temperate forest reflecting the latent natural vegetation is the transition of conifers and deciduous broad-leaved forest to evergreen broad-leaved forest, the communities predominated by the communities predominated by the communities predominated by P. thunbergii, Q. variabilis, and Pl. strobilacea are likely to transform into the evergreen forest predominated by N. sericea and C. yabunikkei. The sites where C. yabunikkei, N. sericea, and Castanopsis sieboldii are dominant in the canopy and sub-canopy layers are likely to maintain the status quo if there is no artificial disturbance. The relationship between the impact of the environmental factors and the vegetation distribution showed silt among the physical properties of the soil directly or indirectly affected it, which was judged to be due to the fact that it was located on a steep slope. The soil acidity (pH) was 5-5.84, electrical conductivity 0.047-0.139 dS/m, and organic matter content was 3.32-12.06%. Although there were differences by the colony, they were generally low.