• Title/Summary/Keyword: Structural modification

Search Result 783, Processing Time 0.026 seconds

Effects of Interactions between the Concrete Deck and Steel Girders on the Dynamic Behavior of Simply Supported Skew Bridges (주형과 상판과의 상호작용이 단순 사교의 동적거동에 미치는 영향)

  • Moon, Seong-Kwon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.593-604
    • /
    • 2007
  • Although composite construction has more mechanical advantages compared to noncomposite construction, the design of noncomposite construction for skew bridges with large skew angels has been often checked because composite construction may cause large stresses in the bridge deck. In this study, the analytical model considered dynamic behaviors for noncomposite skew bridges was proposed. Using the proposed analytical model, the validity of the application of noncomposite construction to skew bridges was checked. Also, the effects of interactions between the concrete deck and steel girders such as composite construction, partial composite construction, and noncomposite construction on the dynamic characteristics and dynamic behaviors of simply supported skew bridges were investigated. A series of parametric studies for the total 27 skew bridges was conducted with respect to parameters such as girder spacing, skew angle, and deck aspect ratio. Although the slip at the interfaces between the concrete deck and steel girders results in the reduction of seismic total base shear in the transverse direction due to period elongation, it causes an undesirable behavior of skew bridges by the modification in mode shapes and distributions of stiffness. Shear connectors placed by minimum requirements for partial composite action have an effect on reducing the girder stresses and deck stresses; except case of some skew bridges, the magnitude of the girder stresses and deck stresses obtained from partial composite skew bridges is similar to or slightly more than those acquired from composite skew bridges.

A Study on Analysis and Design Improvement of Opening Angle of Duct Cap of Ice Dispenser for Refrigerator (냉장고 얼음 디스펜서 덕트 캡의 개방각도 해석 및 설계개선에 관한 연구)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.672-680
    • /
    • 2018
  • The opening angle of the duct cap assembly during the operation of a refrigerator ice dispenser was evaluated by transient structural analysis, and an improved design to maximize the opening angle was obtained. The opening angle of the existing design was found to be 78% of the upper limit. Several design modifications were proposed and analyzed to examine the effects of the design factors on the opening angle. As a result of the design modifications, the opening angle was improved by changing the lever material to a material with a high elastic modulus, moving the position of the support to the motor side, or increasing the lever shaft diameter. Considering the manufacturing cost of the new design, the design modification changing only the lever material was found to be the best because it does not require a change in the structure of the ice dispenser case. In conclusion, the opening angle can be improved by up to 95% of the upper limit value if the lever material is changed to an aluminum alloy. The methods and results presented in this study were found to be of great help in designing the duct cap assembly structure to facilitate the discharge of ice.

Experimental Validation of Isogeometric Optimal Design (아이소-지오메트릭 형상 최적설계의 실험적 검증)

  • Choi, Myung-Jin;Yoon, Min-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.345-352
    • /
    • 2014
  • In this paper, the CAD data for the optimal shape design obtained by isogeometric shape optimization is directly used to fabricate the specimen by using 3D printer for the experimental validation. In a conventional finite element method, the geometric approximation inherent in the mesh leads to the accuracy issue in response analysis and design sensitivity analysis. Furthermore, in the finite element based shape optimization, subsequent communication with CAD description is required in the design optimization process, which results in the loss of optimal design information during the communication. Isogeometric analysis method employs the same NURBS basis functions and control points used in CAD systems, which enables to use exact geometrical properties like normal vector and curvature information in the response analysis and design sensitivity analysis procedure. Also, it vastly simplify the design modification of complex geometries without communicating with the CAD description of geometry during design optimization process. Therefore, the information of optimal design and material volume is exactly reflected to fabricate the specimen for experimental validation. Through the design optimization examples of elasticity problem, it is experimentally shown that the optimal design has higher stiffness than the initial design. Also, the experimental results match very well with the numerical results. Using a non-contact optical 3D deformation measuring system for strain distribution, it is shown that the stress concentration is significantly alleviated in the optimal design compared with the initial design.

Test and Analysis on the Transverse Gusset Plate Connection to Circular Hollow Section(CHS) of High Strength (고강도 원형강관의 직각방향 거셋플레이트 접합부 실험 및 해석)

  • Lee, Swoo-Heon;Shin, Kyung-Jae;Lee, Hee-Du;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.163-173
    • /
    • 2012
  • A connection composed of a circular hollow structural section (HSS) has complicated details, and exhibits a very complex local deformation when it reaches the yield stress. Given these circumstances, proposing a simple design equation considering local deformation is difficult. The design equations of the Korea Building Code (KBC 2009) for HSS joints are simple and are very similar to those of the AISC. These design equations limit the maximum yield stress up to 360MPa and yield ratio (yield strength/tensile strength) up to 0.8. This means that the material with yield strength exceeding 360MPa could be used after verification based on the test or rational analysis for the similar connection. This paper introduces an experimental program and finite element analysis (FEA) for the circular hollow section (CHS) with a transverse gusset plate made of high-strength steel (HSB600) or structural steel (SS400) when the joints are subjected to lateral force. Comparison of the design equations with the results of FEA and test may be used for the modification of the design equations.

Cyclic Load Testing for Weak Axis Joints Connected with SRC Column and RC Beams (SRC기둥-RC보 약축방향 접합부 상세의 구조성능에 대한 실험적 연구)

  • Moon, Jeong-Ho;Lim, Jae-Hyung;Oh, Kyung-Hwan;Kim, Sung-Ho;Lee, Kang-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • An objective of this study is to evaluate the structural performance of the weak axis SRC column-RC beam joints by experiments. Although one of common joint types is the connection with standard hooks, it has been required to examine its safety and to settle problems of the joint among practical engineers. Specimen types are classified into two categories, namely the type of standard hook and the type of shape improvement. The first one is consisted of three specimens which are reference type, development length modification type, and development length supplement type. Three specimens for shape improvement were made with variations on the arrangement of longitudinal reinforcements and the development length. Test results based on cyclic loadings were discussed with load-deflection curves, maximum strengths, strength degradations beyond the maximum. It was found that the standard hook types showed premature failures and consequent strength degradations due to splitting of joint concrete. However, satisfactory performance was obtained with the shape improvement type with wing-plate welding. No premature failures and strength degradations were detected with the specimens.

A Study on the H3PO4-Treated Soft Carbon as Anode Materials for Lithium Ion Batteries (리튬이온전지용 소프트카본 음극 소재의 인산 처리에 대한 연구)

  • Jo, Yong-Nam;Lee, En-Young;Park, Min-Sik;Hong, Ki-Joo;Lee, Sang-Ick;Jeong, Hu-Young;Lee, Zonghoon;Oh, Seung M.;Kim, Young-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.207-215
    • /
    • 2012
  • Soft carbons are prepared by heat-treatment of cokes with different amounts of phosphoric acid (2, 4.5, and 10 wt% vs. cokes) at $900^{\circ}C$ to be used as anode materials for lithium ion batteries. From electrochemical measurements combined with structural analyses, we confirm that abundant nano-pores are existed in the microstructure of soft carbons prepared with the phosphoric acid, which are responsible for further lithium ion storage. Significant increase in reversible capacity of soft carbon is attained in proportion to added amount of the phosphoric acid. We also demonstrate the effect of structural modification with phosphoric acid on electrochemical performance of soft carbon to elucidate the origin of additional capacity.

Pushover Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 정적해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.325-334
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. A pushover analysis of the structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of the semi-rigid connection were adopted for the models. A fiber model was utilized for the moment-curvature relationship of the steel beam and the column, and a three-parameter power model was adopted for the moment-rotation angle of the semi-rigid connection. The top displacement, base-shear force, required ductility for the connection, sequence of the plastic hinge, and design factors such as the overstrength factor, ductility factor, and response modification coefficient were investigated using the pushover analysis of a 2D structure subjected to the equivalent static lateral force of KBC2005. The partial arrangement of the semi-rigid connection was found to have secured higher strength and lateral stiffness than that of the A-Semi frame, and greater ductility than the A-Rigid frame. The TSD connection was found suitable for use for economy and safety in the sample structure.

Modified Kranz Structure in Leaves of Salsola collina (Salsola collina 엽육조직내 변형된 크란츠구조)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.31 no.2
    • /
    • pp.207-214
    • /
    • 2001
  • Anatomy and ultrastructure of the modifeid Krana pattern have been studied in succulent Salsola collina Pall. Cylindrical leaves exhibited the Salsoloid Kranz type containing two layers of peripheral chlorenchyma that surrounded the water storage cells and vascular tissues. Small veins were also peripherally arranged, but mostly embedded in the vicinity of the inner chlorenchma without the orderly arrangement of the concentric layering of bundle sheath and mesophyll cells. The current study mainly focused on the chlorenchyma tissue abutting such minor veins. The outer columnar layer exhibited features similar to the characteristics of palisade mesophyll cells, while the inner cuboid layer to the bundle sheath cells of a typical $C_4$ Kranz pattern. Cellular components of the inner chlorenchyma were centripetal and numerous, but starch-laden chloroplasts were rudimentary in the thylakoidal system. The outer chlorenchyma demonstrated normally developed chloroplasts having well-stacked thylakoids and plastoglobuli. Branched and complicated plasmodesmata frequently occurred in thick interfaces of the two layers, implying the active movement of the photosynthates between them. The present data were mostly congruent with one of the structural features of the C4 subtypes , NADP-ME type, reported in the $C_4$ pattern. The Kranz pattern encountered in this Salsola probably has been directly related to the structural modification that occurred during a functional adaptation to the $C_4$ photosynthesis.

  • PDF

Fine Structural Modification of Mouse Ovarian Tissue by Irradiation of 6 MeV LINAC Radiation (6 MeV LINAC 방사선 조사에 의한 생쥐 난소조직의 미세구조 변화)

  • Yoon, Chul-Ho;Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.33 no.2
    • /
    • pp.117-130
    • /
    • 2003
  • This research investigates the fine structural as well as the morphological changes of the mouse ovarian tissue after irradiation of various dose rates of 6 MeV LINAC radiation. The normal structure of the ovarian tissue is consisted of various stages of follicles including primordial and growing follicles, and ovarian stromal connectives. When we observed the ovarian tissues irradiated with a dose rate of 200 cGy/min using light and electron microscopes, granular cells in growing follicles are in irregular shape unlike normal follicles. Small segments of cells scattered in follicular antrum among granular cells. We could observe neutrophils and macrophages around the segments, which means the cells already got in the process of decease owing to the effects radiation. With coincident to the increase of the dose rate of x-ray irradiation as 400 or 600 cGy/min, the mature follicles appeared as an irregular form and the granular cells surrounding oocyte also deformed comparing to their normal counterparts. The granulosa cells within mature follicle are already occurred necrotic change and apoptosis. The nuclei in some cells got so fragmented that the segments formed the shape of a horseshoe or scattered in small and condensed pieces. All the cells at a granular layer irradiated with a dose rate of 600 cGy/min show typical characteristics of apoptosis. The neutrophils involved in inflammatory reaction appear evidently in follicular antrum of growing follicles, and macrophage scattered with residual and apoptotic bodies.

Influences of Grouting Pressure of Microcement to Upper Structures (지반보강용 마이크로시멘트의 주입압이 상부구조물에 미치는 영향)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.70-77
    • /
    • 2010
  • Microcement grouting and micro pile are frequently used for ground modification during tunnel construction. The influence of grouting pressure of microcement grouting and micro pile to the existing bridge which is directly over the constructing tunnel is investigated. Three dimensional seepage flow-structure interactive analysis considering firm water pressure with full stages of construction including the construction of upper bridge, microcement grouting, micro pile and tunnel is performed. The settlement and tilting of the pier of existing bridge violate the design code and the reaction of the bridge are highly increased after grouting. The stress of tunnel bracings such as rockbolt and shotcrete also exceed the limit of the code. The pressure of microcement grouting is confined by bedrock and transmit to the surrounded soil and the upper bridge. Microcement grouting needs mid-high pressure to penetrate through weak fault plane and the pressure greatly influence the safety of the upper structure. It is important to decide and care the grouting pressure to improve weak fault plane directly under the existing structures and the pressure of microcement grouting should be considered in underground analysis.