• 제목/요약/키워드: Structural materials

검색결과 5,879건 처리시간 0.031초

Investigation of the structural performance of a masonry domed mosque by experimental tests and numerical analysis

  • Seker, Burcin S.;Cakir, Ferit;Dogangun, Adem;Uysal, Habib
    • Earthquakes and Structures
    • /
    • 제6권4호
    • /
    • pp.335-350
    • /
    • 2014
  • Historical masonry mosques are the most important structures of Islamic societies. To estimate the static and dynamic behavior of these historical structures, an examination of their restoration studies is very important. In this study, Kara Mustafa Pasha Mosque, which was built as a domed mosque by Kara Mustafa Pasha between 1666-1667 in Amasya, Turkey, has been analyzed. This study investigates the structural behavior and architectural features of the mosque. In order to determine specific mechanical properties, compression and three-point bending tests were conducted on materials, which have similar age and show similar properties as the examined mosque. Additionally, a three-dimensional finite element model of the mosque was developed and the structural responses were investigated through static and dynamic analyses. The results of the analyses were focused on the stresses and displacements. The experimental test results indicate that the construction materials have greatly retained their mechanical properties over the centuries. The obtained maximum compression and tensile stresses from the analyses have been determined as smaller than the materials' strengths. However, the stresses calculated from dynamic analysis might cause structural problems in terms of tensile stresses.

철근이 부식된 철근콘크리트 구조물의 건전도 평가기술 (Integrity Estimation of The RC Members Damaged by Corrosion of Main Rebar)

  • 권대홍;유석형;노삼영
    • KIEAE Journal
    • /
    • 제7권4호
    • /
    • pp.141-146
    • /
    • 2007
  • It is necessary to guarantee the safety, serviceability and durability of reinforced concrete structures over their service life. However, concrete structures represent a decrease in their durability due to the effects of external environments according to the passage of time, and such degradation in durability can cause structural degradation in materials. In concrete structures, some degradations in durability increase the corrosion of embedded rebars and also decrease the structural performance of materials. Thus, the structural condition assessment of RC materials damaged by corrosion of rebars becomes an important factor that judges needs to apply restoration. In order to detect the damage of reinforced concrete structures, a visual inspection, a nondestructive evaluation method(NDE) and a specific loading test have been employed. However, obscurities for visual inspection and inaccessible members raise difficulty in evaluating structure condition. For these reasons, detection of location and quantification of the damage in structures via structural response have been one of the very important topics in system identification research. The main objective of this project is to develope a methodologies for the damage identification via static responses of the members damaged by durability. Six reinforced concrete beams with variables of corrosion position and corrosion width were fabricated and the damage detections of corroded RC beams were performed by the optimization and the conjugate beam methods using static deflection. In results it is proved that the conjugate beam method could predict the damage of RC members practically.

Structural performance of ferrocement beams reinforced with composite materials

  • Shaheen, Yousry B.I.;Eltaly, Boshra A.;Abdul-Fataha, Samer G.
    • Structural Engineering and Mechanics
    • /
    • 제50권6호
    • /
    • pp.817-834
    • /
    • 2014
  • An experimental program was designed in the current work to examine the structural behavior of ferrocement beams reinforced with composite materials under three point loadings up to failure. The experimental program comprised casting and testing of twelve ferrocement beams having the dimensions of 120 mm width, 200 mm depth and 1600 mm length. The twelve beams were different in the type of reinforcements; steel bars, traditional wire meshes (welded and expanded wire meshes) and composite materials (fiberglass wire meshes and polypropylene wire meshes). The flexural performances of the all tested beams in terms of strength, ductility, cracking behavior and energy absorption were investigated. Also all the tested beams were simulated using ANSYS program. The results of the experimental tests concluded that the beam with fiber glass meshes gives the lowest first crack load and ultimate load. The ferrocement beam reinforced with four layers of welded wire meshes has better structural behavior than those beams reinforced with other types of wire meshes. Also the beams reinforced with metal wire meshes give smaller cracks width in comparing with those reinforced with non-metal wire meshes. Also the Finite Element (FE) simulations gave good results comparing with the experimental results.

Palm oil industry's bi-products as coarse aggregate in structural lightweight concrete

  • Huda, Md. Nazmul;Jumaat, Mohd Zamin;Islam, A.B.M. Saiful;Darain, Kh Mahfuz ud;Obaydullah, M.;Hosen, Md. Akter
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.515-526
    • /
    • 2017
  • Recent trend is to use the lightweight concrete in the construction industry because it has several advantages over normal weight concrete. The Lightweight concrete can be produced from the industrial waste materials. In South East Asian region, researchers are very keen to use the waste materials such as oil palm shell (OPS) and palm oil clinker (POC) from the palm oil producing industries. Extensive research has been done on lightweight concrete using OPS or POC over the last three decades. In this paper the aggregate properties of OPS and POC are plotted in conjunction with mechanical and structural behavior of OPS concrete (OPSC) and POC concrete (POCC). Recent investigation on the use of crushed OPS shows that OPSC can be produced to medium and high strength concrete. The density of OPSC and POCC is around 20-25% lower than normal weight concrete. Generally, mechanical properties of OPSC and POCC are comparable with other types of lightweight aggregate concrete. It can be concluded from the previous study that OPSC and POCC have the noteworthy potential as a structural lightweight concrete.

Thickness-dependent Electrical, Structural, and Optical Properties of ALD-grown ZnO Films

  • Choi, Yong-June;Kang, Kyung-Mun;Park, Hyung-Ho
    • 마이크로전자및패키징학회지
    • /
    • 제21권2호
    • /
    • pp.31-35
    • /
    • 2014
  • The thickness dependent electrical, structural, and optical properties of ZnO films grown by atomic layer deposition (ALD) at various growth temperatures were investigated. In order to deposit ZnO films, diethylzinc and deionized water were used as metal precursor and reactant, respectively. ALD process window was found at the growth temperature range from $150^{\circ}C$ to $250^{\circ}C$ with a growth rate of about $1.7{\AA}/cycle$. The electrical properties were studied by using van der Pauw method with Hall effect measurement. The structural and optical properties of ZnO films were analyzed by using X-ray diffraction, field emission scanning electron microscopy, and UV-visible spectrometry as a function of thickness values of ZnO films, which were selected by the lowest electrical resistivity. Finally, the figure of merit of ZnO films could be estimated as a function of the film thickness. As a result, this investigation of thickness dependent electrical, structural, and optical properties of ZnO films can provide proper information when applying to optoelectronic devices, such as organic light-emitting diodes and solar cells.

이완하중 산정식에 따른 콘크리트라이닝 거동특성에 관한 연구 (A study on behavioral characteristics of concrete lining based on the equations of relaxed rock loads)

  • 김상환;박인준;문훈기;신용석
    • 한국터널지하공간학회 논문집
    • /
    • 제12권6호
    • /
    • pp.443-450
    • /
    • 2010
  • NATM 터널의 콘크리트라이닝은 국내 도입 초기에는 내장재로서 고려되었으나, 최근에는 구조재로서의 역할로 고려되고 있다. 따라서 설계 시 여러 가지 하중을 고려해야 하며, 그중에서도 지반이완하중은 콘크리트라이닝의 두께 및 철근보강유무를 결정하는 주요 하중이다. 도심지 지하철터널에서는 한계평형이론식 Terzaghi 암반분류 등을 사용하여 비교적 높은 이완하중을 적용하여 설계하고 있다. 본 연구에서는 이완하중 산정식들에 대해 검토하고 이완하중 산정법에 따른 구조계산을 수행하여 콘크리트라이닝의 거동을 파악하고자 한다.

복합재료 평면 안테나 구조의 제작 및 기계적 특성 평가 (Design of Microstrip Antenna with Composite Laminates and its structural rigidity)

  • 전지훈;유치상;김차겸;황운봉;박현철;박위상
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.195-198
    • /
    • 2002
  • Two types of conformal load-bearing antenna structure (CLAS) were designed with microwave composite laminates and Nomex honeycomb cores, to give both structural rigidity and good electrical performance. One is 4$\times$8 array for Synthetic Aperture Radar(SAR) system and the other is $5\times2$ array for wireless LAN system. Design was based on wide bandwidth, high polarization purity, low loss and good structural rigidity. We studied the design, fabrication and structural/electrical performances of the antenna structures. The flexural behavior was observed under a 3-point bending test, an impact test, and a buckling test. Electrical measurements were in good agreement with simulation results and these complex antenna structures have good flexural characteristics. The design of this antenna structure is extended to give a useful guide for sandwich panel manufacturers as well as antenna designers.

  • PDF

십자형 복합재 유연보 장착 무베어링 로터 시스템 구조동역학 해석 (Structural Dynamic Analysis of Bearingless Rotor System with Cross-shaped Composite Flexbeam)

  • 김도형;임인규;이명규;이인
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.108-111
    • /
    • 2004
  • Structural dynamic characteristics and aeroelastic stability of a small-scale bearingless rotor system have been investigated. A flexbeam is one of the most important component of bearingless hub system. It must have sufficient torsional flexibility as well as baseline stiffness in order to produce feathering motion. In the present paper, a cross-shaped composite flexbeam has been proposed for a guarantee of torsional flexibility and flapwise and lagwise bending stiffness. One dimensional elastic beam model was used for the construction of a structural model. Equivalent isotropic sectional stiffness was used in the blade model, and the flexbeam was regarded as anisotropic; which has ten independent stiffness quantities. CAMRAD II has been used for the analysis of structural dynamic characteristics of the bearingless rotor system. Rotational natural frequencies and aeroelastic stability at hovering have been investigated. Analysis result shows that the cross-shaped flexbeam has the rotational natural frequency tuning capacity.

  • PDF

A combined experimental and numerical method for structural response assessment applied to cable-stayed footbridges

  • Kossakowski, Pawel G.
    • Advances in Computational Design
    • /
    • 제2권3호
    • /
    • pp.143-163
    • /
    • 2017
  • This paper presents a non-destructive testing method for estimating the structural response of cable-stayed footbridges. The approach combines field measurements with a numerical static analysis of the structure. When the experimental information concerning the structure deformations is coupled with the numerical data on the structural response, it is possible to calculate the static forces and the design tension resistance in selected structural elements, and as a result, assess the condition of the entire structure. The paper discusses the method assumptions and provides an example of the use of the procedure to assess the load-carrying capacity of a real steel footbridge. The proposed method can be employed to assess cable-stayed structures including those made of other materials, e.g., concrete, timber or composites.

온-라인 구조물 계측 시스템을 위한 용접조립 H형강보의 구조적 거동에 관한 연구 (A Study on the Sructural Behavior of Welded Built-up H-Beams for On-line Monitoring System)

  • 안형준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.127-133
    • /
    • 2002
  • Most structures are constantly influenced by repeated weathering phenomena and load action during a period of its utilization, and their component materials become superannuated and their design performance becomes slowly lost. Therefore, it is thought that it is necessary to develop the online monitoring system that can make a great contribution to the maintenance management and disaster prevention of the building structure by sensing any slight change of the entire structure regardless of its inside and outside. Especially, this study was intended to explain the entire system of the online structure by interpreting welded built-up H-beams, of structural steel members having many advantages in terms of the qualities of structural materials, through limit state design, and presenting the basic plan to apply it to the structure.