• 제목/요약/키워드: Structural distortion

검색결과 252건 처리시간 0.026초

Analysis of curved multicell box girder assemblages

  • Razaqpur, A. Ghani;Li, Hangang
    • Structural Engineering and Mechanics
    • /
    • 제5권1호
    • /
    • pp.33-49
    • /
    • 1997
  • A method of analysis is proposed for curved multicell box girder grillages. The method can be used to analyze box girder grillages comprising straight and/or curved segments. Each segment can be modelled by a number of beam elements. Each element has three nodes and the nodal degrees of freedom (DOF) consist of the six DOF for a conventional beam plus DOF to account for torsional warping, distortion, distortional warping, and shear lag. This element is an extension of a straight element that was developed earlier. For a more realistic analysis of the intersection regions of non-colinear box girder segments, the concept of a rigid connector is introduced, and the compatibility requirements between adjoining elements in those regions are discussed. The results of the analysis showed good agreement with the shell finite element results, but the proposed method of analysis needs a fraction of the time and effort compared to the shell finite element analysis.

등가회로 해석법에 의한 환단면형 유도전자펌프의 설계 (A design of the annular induction electromagnetic pump by equivalent circuit modelling)

  • 김희령;홍상희;황종선;민병태;남호윤;조만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1431-1434
    • /
    • 1994
  • The annular induction electromagnetic pump with maximum flowrate of $60{\ell}/min$ for the sodium coolant system of liquid metal fast breeder reacters has been designed using the equivalent circuit method. The final optimum values of geometrical and electromagnetic parameters were obtained for an annular induction pump from the relation of the electrical variables giving the developing force to the fluid and the pressure drops between both sides of the pump. The physical properties of the core, coil condoctor materials in the high temperature and pump cooling systems under operation have been taken into account in the design of the pump. The structural material were also selected considering the reaction with sodium and the magnetic field distortion.

  • PDF

Growth and Dissolve of Defects in Boron Nitride Nanotube

  • Lee, Jun-Ha;Lee, Hoong-Joo
    • 반도체디스플레이기술학회지
    • /
    • 제3권3호
    • /
    • pp.23-25
    • /
    • 2004
  • The defect formation energy of boron nitride (BN) nanotubes is investigated using molecular-dynamics simulation. Although the defect with tetragon-octagon pairs (4-88-4) is favored in the flat cap of BN nanotubes, BN clusters, and the growth of BN nanotubes, the formation energy of the 4-88-4 defect is significantly higher than that of the pentagon-heptagon pairs (5-77-5) defect in BN nanotubes. The 5-77-5 defect reduces the effect of the structural distortion caused by the 4-88-4 defect, in spite of homoelemental bonds.

  • PDF

The effect of constitutive spins on finite inelastic strain simulations

  • Cho, Han Wook;Dafalias, Yannis F.
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.755-765
    • /
    • 1997
  • Within the framework of anisotropic combined viscoplastic hardening formulation, accounting macroscopically for residual stress as well as texture development at finite deformations of metals, simple shear analyses for the simulation of fixed-end torsion experiments for ${\alpha}$-Fe, Al and Cu at different strain rates are reviewed with an emphasis on the role of constitutive spins. Complicated responses of the axial stresses with monotonically increasing shear deformations can be successfully described by the capacity of orthotropic hardening part, featuring tensile axial stresses either smooth or oscillatory. Temperature effect on the responses of axial stresses for Cu is investigated in relation to the distortion and orientation of yield surface. The flexibility of this combined hardening model in the simulation of finite inelastic strains is discussed with reference to the variations of constitutive spins depending upon strain rates and temperatures.

대형디젤엔진의 열적 피로안전도 분석을 위한 유한요소해석 (Finite Element Analysis of Thermal Fatigue Safety for a Heavy-Duty Diesel Engine)

  • 조남효;이상업;이상규;이상헌
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.122-129
    • /
    • 2004
  • Finite element analysis was performed to analyze structural safety of a new heavy-duty direct injection diesel engine. A half section of the in-line 6-cylinder engine was selected as a computational domain. A mapping method was used to project heat transfer coefficients from CFD results of engine coolant flow onto the FE model. The accurate setting of thermal boundary condition on the FE model was expected to result in improved prediction of temperature, cylinder bore distortion, and stresses. Characteristics of high cycle fatigue were investigated by assuming the engine was operated under the following five loading conditions repeatedly; assembly force, assembly force with thermal loading, alternating maximum gas pressure loading at each cylinder combined with assembly force and thermal loading. Distribution of fatigue safety factor was calculated by using it Haigh diagram in which the maximum and the minimum stresses were selected from the five loading cases.

The LS$\rightarrow$HS Transition of Cobalt(III) in an Oxygen Lattice with the $K_2NiF_4$-Type Structure: Correlations with the Chemical Bonding Environment of the $(CoO_6)$ Octahedron Along the c-axis

  • Byeon, Song-Ho;Demazeau, Gerard
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권11호
    • /
    • pp.949-953
    • /
    • 1994
  • In oxides characterized by the $K_2NiF_4-type$ structure, the low-spin${\to}$high-spin transition of trivalent cobalt ion was studied in function of the nature of competing bonds in the perovskite-plane and along the c-axis. Using Slichter and Drickamer's model the calculated values of parameters characterizing such a transition are correlated with the covalency of competing bonds along the c-axis of the $K_2NiF_4$-structure and the local structural distortion of the $(CoO_6)$ octahedron.

Generalized curved beam on elastic foundation solved by transfer matrix method

  • Arici, Marcello;Granata, Michele Fabio
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.279-295
    • /
    • 2011
  • A solution of space curved bars with generalized Winkler soil found by means of Transfer Matrix Method is presented. Distributed, concentrated loads and imposed strains are applied to the beam as well as rigid or elastic boundaries are considered at the ends. The proposed approach gives the analytical and numerical exact solution for circular beams and rings, loaded in the plane or perpendicular to it. A well-approximated solution can be found for general space curved bars with complex geometry. Elastic foundation is characterized by six parameters of stiffness in different directions: three for rectilinear springs and three for rotational springs. The beam has axial, shear, bending and torsional stiffness. Numerical examples are given in order to solve practical cases of straight and curved foundations. The presented method can be applied to a wide range of problems, including the study of tanks, shells and complex foundation systems. The particular case of box girder distortion can also be studied through the beam on elastic foundation (BEF) analogy.

Electronic and Magnetic Structures of Ba2MReO6 (M=Mn, Fe, Co, and Ni)

  • Park, J.H.;Kwon, S.K.;Min, B.I.
    • Journal of Magnetics
    • /
    • 제12권2호
    • /
    • pp.64-67
    • /
    • 2007
  • Electronic structures of ordered double perovskites $Ba_2MReO_6$ (M=Mn, Fe, Co, and Ni) are investigated by using the linearized muffin-tin orbitals band method in the local spin-density approximation (LSDA) and the LSDA+U method. The half-metallic ferrimagnetic ground states are obtained for M=Fe and Ni in the LSDA+U, whereas the insulating ground state is obtained for M=Mn in the LSDA+U incorporating the spinorbit interaction. For M= Co, the antiferromagnetic ground state is stabilized in the LSDA+U by invoking the structural distortion.

Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure

  • Mehar, Kulmani;Panda, Subrata Kumar
    • Advances in nano research
    • /
    • 제7권3호
    • /
    • pp.181-190
    • /
    • 2019
  • The thermal buckling temperature values of the graded carbon nanotube reinforced composite shell structure is explored using higher-order mid-plane kinematics and multiscale constituent modeling under two different thermal fields. The critical values of buckling temperature including the effect of in-plane thermal loading are computed numerically by minimizing the final energy expression through a linear isoparametric finite element technique. The governing equation of the multiscale nanocomposite is derived via the variational principle including the geometrical distortion through Green-Lagrange strain. Additionally, the model includes different grading patterns of nanotube through the panel thickness to improve the structural strength. The reliability and accuracy of the developed finite element model are varified by comparison and convergence studies. Finally, the applicability of present developed model was highlight by enlighten several numerical examples for various type shell geometries and design parameters.

TEM sample preparation of microsized LiMn2O4 powder using an ion slicer

  • Jung Sik Park;Yoon‑Jung Kang;Sun Eui Choi;Yong Nam Jo
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.19.1-19.7
    • /
    • 2021
  • The main purpose of this paper is the preparation of transmission electron microscopy (TEM) samples from the microsized powders of lithium-ion secondary batteries. To avoid artefacts during TEM sample preparation, the use of ion slicer milling for thinning and maintaining the intrinsic structure is described. Argon-ion milling techniques have been widely examined to make optimal specimens, thereby making TEM analysis more reliable. In the past few years, the correction of spherical aberration (Cs) in scanning transmission electron microscopy (STEM) has been developing rapidly, which results in direct observation at an atomic level resolution not only at a high acceleration voltage but also at a deaccelerated voltage. In particular, low-kV application has markedly increased, which requires a sufficiently transparent specimen without structural distortion during the sample preparation process. In this study, sample preparation for high-resolution STEM observation is accomplished, and investigations on the crystal integrity are carried out by Cs-corrected STEM.