• Title/Summary/Keyword: Structural design optimization

Search Result 1,622, Processing Time 0.029 seconds

A robust genetic algorithm for structural optimization

  • Chen, S.Y.;Rajan, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.313-336
    • /
    • 2000
  • The focus of this paper is on the development and implementation of a methodology for automated design of discrete structural systems. The research is aimed at utilizing Genetic Algorithms (GA) as an automated design tool. Several key enhancements are made to the simple GA in order to increase the efficiency, reliability and accuracy of the methodology for code-based design of structures. The AISC-ASD design code is used to illustrate the design methodology. Small as well as large-scale problems are solved. Simultaneous sizing, shape and topology optimal designs of structural framed systems subjected to static and dynamic loads are considered. Comparisons with results from prior publications and solution to new problems show that the enhancements made to the GA do indeed make the design system more efficient and robust.

Robust Optimization Design of Overhead Crane with Constraint using the Characteristic Functions (특성함수를 이용한 제한조건이 있는 천장크레인의 강건최적설계)

  • 홍도관;최석창;안찬우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.160-167
    • /
    • 2004
  • The correlation between the object function and the design parameter is shown on this paper by using the characteristic function for the mixed result of the structural analysis, the buckling analysis and the table of orthogonal array according to the original overhead crane's dimensional change. About the above two functions, the effectiveness of design change according to the change of design parameters could be estimated. Also, the overhead crane's weight is reduced up to 10.55 percent maintaining the structural stability according to the thickness of plate.

Discrete approaches in evolution strategies based optimum design of steel frames

  • Hasancebi, O.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.191-210
    • /
    • 2007
  • The three different approaches (reformulations) of evolution strategies (ESs) have been proposed in the literature as extensions of the technique for solving discrete problems. This study implements an extensive research on application, evaluation and comparison of them in discrete optimum design of steel frames. A unified formulation is first developed to explain these approaches, so that differences and similarities between their inherent search mechanisms can clearly be identified. Two examples from practical design of steel frames are studied next to measure their performances in locating the optimum. Extensive numerical experimentations are performed in both examples to facilitate a statistical analysis of their convergence characteristics. The results obtained are presented in the histograms demonstrating the distribution of the best designs located by each approach. In addition, an average improvement of the best design during the course of evolution is plotted in each case to compare their relative convergence rates.

Optimal Design of I-type Girder in 2 Span Continuous Steel Bridges by LRFD (LRFD에 의한 2경간 연속 강교량 주부재의 최적화 설계)

  • 국중식;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.78-85
    • /
    • 1999
  • In this study, I-type girders used as main members of a two span continuous steel bridge, are optimally designed by a Load and Resistance Factor Design method(LRFD) using an numerical optimization method. The width, height web thickness and flange thickness of the main girder are set as design variables, and light weight design is attempted by choosing the cross-sectional area as an object function. The main program is coded with C++ and connected with optimization modul ADS, which is coded with FORTRAN. The results of the program show that the stress constraints of noncomposite section during the initial construction stage become active in the positive moment area and the service limit state constaints become active in the negative moment area.

  • PDF

Optimum Design of The Underground Parking Place By Slab-Band System (슬래브-밴드 시스템에 의한 지하주차장의 최적설계)

  • 조인기;박기흉;강문명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.91-97
    • /
    • 1993
  • The purpose of this investigation is to find the optimum values of the steel ratio, the effective depth, and the width of band for an economical design of the underground parking place by SB(slab-band) System. To simplify the optimization procedure, the final optimum ultimate strength design of SB system is obtained by combining the optimum design of each of the three component parts of SB system, namely : slab, band, and marginal beam. In this paper, nonlinear optimum GINO(General Interactive Optimizer) programming used in optimization procedure is described. Example is included to illustrate the application of the algorithm presented herein.

  • PDF

Simulation-based Jansen mechanism utilizing walking robot of the design and implementation in order to implement the best walking movement. (최적 보행 동작 구현을 위한 시뮬레이션 기반 Jansen Mechanism 활용 보행 로봇 설계 및 구현.)

  • Kim, Heechan;Kim, SeungHa
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.467-468
    • /
    • 2016
  • The importance of the recent manufacturing industry have been made to invest in a lot of assistance and human resource development at the national dimension in which to rise again. However Learned in actual school education kinetic, and the use to how product design structural knowledge, Often it feels vague unlikely whether it is possible to derive an optimal product. In this study, by using the simulation-based Jansen Mechanism designed a walking robot, after optimization of the numerical consideration when designing for optimum walking motion, through simulation through the actual production resulting numerical information is examined whether valid. In addition, through the actual production was walking robot, to verify the validity of the simulation-based design.

  • PDF

Data Server Oriented Computing Infrastructure for Process Integration and Multidisciplinary Design Optimization (다분야통합최적설계를 위한 데이터 서버 중심의 컴퓨팅 기반구조)

  • 홍은지;이세정;이재호;김승민
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.231-242
    • /
    • 2003
  • Multidisciplinary Design Optimization (MDO) is an optimization technique considering simultaneously multiple disciplines such as dynamics, mechanics, structural analysis, thermal and fluid analysis and electromagnetic analysis. A software system enabling multidisciplinary design optimization is called MDO framework. An MDO framework provides an integrated and automated design environment that increases product quality and reliability, and decreases design cycle time and cost. The MDO framework also works as a common collaborative workspace for design experts on multiple disciplines. In this paper, we present the architecture for an MDO framework along with the requirement analysis for the framework. The requirement analysis has been performed through interviews of design experts in industry and thus we claim that it reflects the real needs in industry. The requirements include integrated design environment, friendly user interface, highly extensible open architecture, distributed design environment, application program interface, and efficient data management to handle massive design data. The resultant MDO framework is datasever-oriented and designed around a centralized data server for extensible and effective data exchange in a distributed design environment among multiple design tools and software.

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조 강도 해석 및 설계 최적화에 관한 연구)

  • Won June-Ho;Kim Jong-Soo;choi Joo-Ho;Yoon Jong-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, a CAB/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares, for a complicated model for which parametric modeling provided by CAD software is not possible. CAD modeling process is automated by using UG/OPEN API function and UG/Knowledge Fusion provided by Unigraphics. The generated model is transferred to the analysis code ANSYS in parasolid format. Visual DOC software is used for optimization. The system is developed for PLS(Plasma Lighting System), which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The PLS system consists of more then 20 components, which requires a lot of human efforts in modeling and analysis. The analysis for PLS includes static load, wind load and impact load analysis. As a result of analysis, it is found that the most critical component is a tilt assembly, which links lower & upper body assembly. For more reliable analysis, experiment is conducted using MTS and compared with the Finite element analysis result. The objective in the optimization is to minimize the material volume under allowable stresses. The design variables are three parameters in the tilt assembly that are chosen to be the most sensitive in stress values of twelve parameters. Gradient based method and RSM(Response Surface Method) are used for the algorithm and the results are compared. As a result of optimization, the maximum stress is reduced by 57%.

  • PDF

Reliability-based Design Optimization using Multiplicative Decomposition Method (곱분해기법을 이용한 신뢰성 기반 최적설계)

  • Kim, Tae-Kyun;Lee, Tae-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.299-306
    • /
    • 2009
  • Design optimization is a method to find optimum point which minimizes the objective function while satisfying design constraints. The conventional optimization does not consider the uncertainty originated from modeling or manufacturing process, so optimum point often locates on the boundaries of constraints. Reliability based design optimization includes optimization technique and reliability analysis that calculates the reliability of the system. Reliability analysis can be classified into simulation method, fast probability integration method, and moment-based reliability method. In most generally used MPP based reliability analysis, which is one of fast probability integration method, if many MPP points exist, cost and numerical error can increase in the process of transforming constraints into standard normal distribution space. In this paper, multiplicative decomposition method is used as a reliability analysis for RBDO, and sensitivity analysis is performed to apply gradient based optimization algorithm. To illustrate whole process of RBDO mathematical and engineering examples are illustrated.

Conceptual Design Optimization of Tensairity Girder Using Variable Complexity Modeling Method

  • Yin, Shi;Zhu, Ming;Liang, Haoquan;Zhao, Da
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Tensairity girder is a light weight inflatable fabric structural concept which can be used in road emergency transportation. It uses low pressure air to stabilize compression elements against buckling. With the purpose of obtaining the comprehensive target of minimum deflection and weight under ultimate load, the cross-section and the inner pressure of tensairity girder was optimized in this paper. The Variable Complexity Modeling (VCM) method was used in this paper combining the Kriging approximate method with the Finite Element Analysis (FEA) method, which was implemented by ABAQUS. In the Kriging method, the sample points of the surrogate model were outlined by Design of Experiment (DOE) technique based on Optimal Latin Hypercube. The optimization framework was constructed in iSIGHT with a global optimization method, Multi-Island Genetic Algorithm (MIGA), followed by a local optimization method, Sequential Quadratic Program (SQP). The result of the optimization gives a prominent conceptual design of the tensairity girder, which approves the solution architecture of VCM is feasible and efficient. Furthermore, a useful trend of sensitivity between optimization variables and responses was performed to guide future design. It was proved that the inner pressure is the key parameter to balance the maximum Von Mises stress and deflection on tensairity girder, and the parameters of cross section impact the mass of tensairity girder obviously.