• Title/Summary/Keyword: Structural deformation analysis

Search Result 1,713, Processing Time 0.023 seconds

Evaluation on Behavioral Characteristics of PSC Integral Abutment Bridge (PSC 일체식 교대 교량의 거동특성 평가)

  • Ahn, Jin-Hee;Yoon, Ji-Hyun;Kim, Sang-Hyo;Kim, Jun-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.361-373
    • /
    • 2010
  • Bridges constructed without any expansion joint or bridge bearing are called integral abutment bridges. They integrate the substructure and the superstructure. Possible deformation of the superstructure, due to changes in temperature for example, is prevented by the bending of the piles placed at the lower part of the abutment. This study examines the behavior of integral abutment bridges through soil-pile interaction modeling method and proposes an appropriate modeling method. Also, it assesses the behavior characteristics of the superstructure and piles of integral abutment bridges through parametric study. Soil condition around the pile, abutment height, and pile length were selected as parameters to be analyzed. Structural analysis was conducted while considering the interactions of soil-pile and temperature change-earth pressure on the abutment. Comparative behavior analysis through soil-pile interaction modeling showed that elastic soil spring method is more appropriate in evaluating the behavior of integral abutment bridges. The parametric study showed the tendency that as the soil stiffness around the pile increases, the moment imposed on the superstructure increases, and the displacement of the piles decreases. In addition, it was observed that as the bridge height increases, the earth pressure on the abutment increases and that in turn affects the behavior of the superstructure and piles. Also, as the length of the pile increased, the integral bridge showed more flexible behavior.

Simplistic Beam Theory-based Structural Safety Evaluation Method for Block Structure on the A-Carrier (블록 구조물 적치용 지지대의 빔 이론 기반 구조 안전성 평가법)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.358-364
    • /
    • 2024
  • Type A carrier structures that support blocks or equipment gradually deform over time with load changes, reducing the area in contact with the block and changing the load pattern from distributed to concentrated during construction work in the shipyard. This phenomenon has the potential to misrepresent actual service loads. In particular, A carriers are often used by small manufacturers, who often do not have specialized engineering capabilities, necessitating the development of a method for easy calculation of carrier safe working load. This study proposes a quick evaluation method for the long-term safe working load of Type A carriers, to predict the plastic deformation and safety issues resulting from changes in load distribution. Based on the results of finite element analysis (beam and shell modeling) of the centralized load, beam-theory was modified to propose a method for determining the distributed load conditions of the A-carrier. In beam modeling, the theoretical value was multiplied by a correction factor of 0.73 for concentrated loads and 0.69 for distributed loads to obtain a safe working load. For shell modeling, a correction factor of 0.75 can be used for concentrated loads and 0.69 for distributed loads. This study can serve as a basis for improving the safety of shipbuilding, enabling quick and effective decisions for determining safe working loads in actual working environments.

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (II) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (II))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.174-183
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (II).

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (I) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (I))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.160-173
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (I).

Analysis of the Effect of Corner Points and Image Resolution in a Mechanical Test Combining Digital Image Processing and Mesh-free Method (디지털 이미지 처리와 강형식 기반의 무요소법을 융합한 시험법의 모서리 점과 이미지 해상도의 영향 분석)

  • Junwon Park;Yeon-Suk Jeong;Young-Cheol Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.67-76
    • /
    • 2024
  • In this paper, we present a DIP-MLS testing method that combines digital image processing with a rigid body-based MLS differencing approach to measure mechanical variables and analyze the impact of target location and image resolution. This method assesses the displacement of the target attached to the sample through digital image processing and allocates this displacement to the node displacement of the MLS differencing method, which solely employs nodes to calculate mechanical variables such as stress and strain of the studied object. We propose an effective method to measure the displacement of the target's center of gravity using digital image processing. The calculation of mechanical variables through the MLS differencing method, incorporating image-based target displacement, facilitates easy computation of mechanical variables at arbitrary positions without constraints from meshes or grids. This is achieved by acquiring the accurate displacement history of the test specimen and utilizing the displacement of tracking points with low rigidity. The developed testing method was validated by comparing the measurement results of the sensor with those of the DIP-MLS testing method in a three-point bending test of a rubber beam. Additionally, numerical analysis results simulated only by the MLS differencing method were compared, confirming that the developed method accurately reproduces the actual test and shows good agreement with numerical analysis results before significant deformation. Furthermore, we analyzed the effects of boundary points by applying 46 tracking points, including corner points, to the DIP-MLS testing method. This was compared with using only the internal points of the target, determining the optimal image resolution for this testing method. Through this, we demonstrated that the developed method efficiently addresses the limitations of direct experiments or existing mesh-based simulations. It also suggests that digitalization of the experimental-simulation process is achievable to a considerable extent.

An Experimental Study on Punching Shear at the Connection of RC Column Constrained by H-Beam with 井 Shape (정(井)자형 H형강으로 구속된 철근콘크리트 기둥접합부의 뚫림전단에 관한 실험적 연구)

  • Kim, Lyang-Woon;Lee, Soo-Kueon;Lee, Jung-Yoon;Chung, Chang-Yong;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.319-326
    • /
    • 2009
  • Two parallel wide flange built-up beams are widely used as struts in resisting lateral earth pressure because of the effectiveness in structure and construction. In a certain structural system, the reinforced concrete columns are to be placed at the intersection where two perpendicular beams cross each other, the square part of the joint being filled with concrete. In the punching shear mechanism of the beam-column joint, the radial deformation caused due to shear cracking will be constrained by the spring action of the squarely encompassed beam flanges. As a result, the punching shear strength of the joint concrete can be expected to be increased. To verify this phenomenon experiments have been performed for various constraining elements and distances between columns and constraints. Test results are compared with the approximation analysis formula which has been proposed in this study, based on the code formula. The results calculated by the proposed equation show comparatively close agreement with the punching shear strength detected from the test.

Development of Deterioration Prediction Model and Reliability Model for the Cyclic Freeze-Thaw of Concrete Structures (콘크리트구조물의 반복적 동결융해에 대한 수치 해석적 열화 예측 및 신뢰성 모델 개발)

  • Cho, Tae-Jun;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The initiation and growth processes of cyclic ice body in porous systems are affected by the thermo-physical and mass transport properties, as well as gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and the deterioration by the accumulated damages are hard to identify in tests. In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the response surface method (RSM) is used. The important parameters for cyclic freeze-thawdeterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used to compose the limit state function. The regression equation fitted to the important deterioration criteria, such as accumulated plastic deformation, relative dynamic modulus, or equivalent plastic deformations, were used as the probabilistic evaluations of performance for the degraded structural resistance. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages due to the cyclic freeze-thaw using the proposed prediction method.

Numerical Simulation for the Quasi-static Behavior of Superelastic Nitinol Shape Memory Alloys (SMAs) (초탄성 니티놀 형상기억합금의 준정적 거동에 대한 수치해석적 재현)

  • Hu, Jong Wan
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.493-501
    • /
    • 2015
  • Superelastic shape memory alloys (SMAs) are metallic materials that can automatically recover to their original condition without heat treatment only after the removal of the applied load. These smart materials have been wildly applied instead of steel materials to the place where large deformation is likely to concentrate. In spite of many advantages, superelastic SMA materials have been limited to use in the construction filed because there is lack of effort and research involved with the development of the material model, which is required to reproduce the behavior of superelastic SMA materials. Therefore, constitutive material models as well as algorithm codes are mainly treated in this study for the purpose of simulating their hysteretic behavior through numerical analyses. The simulated curves are compared and calibrated to the experimental test results with an aim to verify the adequacy of material modeling. Furthermore, structural analyses incorporating the material property of the superelastic SMAs are conducted on simple and cantilever beam models. It can be shown that constitutive material models presented herein are adequate to reliably predict the behavior of superelastic SMA materials under cyclic loadings.

Behavior Analysis of RMPM Applied Steel Frame Structures (반력모멘트를 이용한 라멘형 철골구조물의 거동분석)

  • Ahn, Jin Hee;Kim, Jun Hwan;Kim, Tae Yeon;Kim, Sang Hyo;Lee, Sang Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.611-620
    • /
    • 2007
  • The beam-column connection is the critical design section of general steel frame structures owing to the behavioral characteristics of the structural system. As most members of a frame structure are composed of rolled section beams, the cross-section of the beam members is governed by the negative bending moment near beam-column connections. Such a design concept leaves a redundant load-carrying capacity at the positive bending regions of the beam members leading to design inefficiency. Therefore, it is of utmost importance to redistribute the beam end moments and reduce the stresses at the beam-column connections for a more efficient design of steel frame structures. In this study, reaction-moment prestressing method (RMPM) was proposed for the innovative design and construction of steel frame structures. The RMPM is a prestressing method utilizing the elastic bending deformation of a beam member induced by temporary prestressing for the distribution of a relatively large bending moment to other sections for the efficient use of the beam section. By the application of the RMPM, the negative bending moment at the beam-column connections can be significantly reduced, ultimately leading to possible use of smaller beam sections. Through a series of model tests and numerical analyses of steel frame structures, the moment distributing effect and feasibility of the RMPM was verified.

An Analysis of Geophysical and Temperature Monitoring Data for Leakage Detection of Earth Dam (흙댐의 누수구역 판별을 위한 물리탐사와 온도 모니터링 자료의 해석)

  • Oh, Seok-Hoon;Suh, Baek-Soo;Kim, Joong-Ryul
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.563-572
    • /
    • 2010
  • Both multi-channel temperature monitoring and geophysical electric survey were performed together for an embankment to assess the leakage zone. Temperature variation according to space and time on the inner parts of engineering constructions (e.g.: dam and slope) can be basic information for diagnosing their safety problem. In general, as constructions become superannuated, structural deformation (e.g.: cracks and defects) could be generated by various factors. Seepage or leakage of water through the cracks or defects in old dams will directly cause temperature anomaly. This study shows that the position of seepage or leakage in dam body can be detected by multi-channel temperature monitoring using thermal line sensor. For that matter, diverse temperature monitoring experiments for a leakage physical model were performed in the laboratory. In field application of an old earth fill dam, temperature variations for water depth and for inner parts of boreholes located at downstream slope were measured. Temperature monitoring results for a long time at the bottom of downstream slope of the dam showed the possibility that temperature monitoring can provide the synthetic information about flowing path and quantity of seepage of leakage in dam body. Geophysical data by electrical method are also added to help interpret data.