• 제목/요약/키워드: Structural deformation

검색결과 2,817건 처리시간 0.027초

Plastic Deformation Capacity of Steel Beam-to-Column Connection under Long-duration Earthquake

  • Yamada, Satoshi;Jiao, Yu;Narihara, Hiroyuki;Yasuda, Satoshi;Hasegawa, Takashi
    • 국제초고층학회논문집
    • /
    • 제3권3호
    • /
    • pp.231-241
    • /
    • 2014
  • Ductile fracture is one of the most common failure modes of steel beam-to-column connections in moment resisting frames. Most proposed evaluation methods of the plastic deformation capacity of a beam until ductile fracture are based on steel beam tests, where the material's yield strength/ratio, the beam's moment gradient, and loading history are the most important parameters. It is impossible and unpractical to cover all these parameters in real tests. Therefore, a new attempt to evaluate a beam's plastic deformation capacity through analysis is introduced in this paper. Another important issue is about the loading histories. Recent years, the effect on the structural component under long-duration ground motion has drawn great attentions. Steel beams tends to experience a large number of loading cycles with small amplitudes during long-duration earthquakes. However, current research often focuses on the beam's behavior under standard incremental loading protocols recommended by respective countries. In this paper, the plastic deformation capacity of steel beams subjected to long duration ground motions was evaluated through analytical methodology.

On the optimum performance-based design of eccentrically braced frames

  • Mohammadi, Reza Karami;Sharghi, Amir Hossein
    • Steel and Composite Structures
    • /
    • 제16권4호
    • /
    • pp.357-374
    • /
    • 2014
  • The design basis is being shifted from strength to deformation in modern performance-based design codes. This paper presents a practical method for optimization of eccentrically braced steel frames, based on the concept of uniform deformation theory (UDT). This is done by gradually shifting inefficient material from strong parts of the structure to the weak areas until a state of uniform deformation is achieved. In the first part of this paper, UDT is implemented on 3, 5 and 10 story eccentrically braced frames (EBF) subjected to 12 earthquake records representing the design spectrum of ASCE/SEI 7-10. Subsequently, the optimum strength-distribution patterns corresponding to these excitations are determined, and compared with four other loading patterns. Since the optimized frames have uniform distribution of deformation, they undergo less damage in comparison with code-based designed structures while having minimum structural weight. For further investigation, the 10 story EBF is redesigned using four different loading patterns and subjected to 12 earthquake excitations. Then a comparison is made between link rotations of each model and those belonging to the optimized one which revealed that the optimized EBF behaves generally better than those designed by other loading patterns. Finally, efficiency of each loading pattern is evaluated and the best one is determined.

고주파 유도 단일패스 선상가열 유기 후판 성형 기술 (Deformation Technology for Thick Plate Using Single Pass Line Heating by High Frequency Induction Heating)

  • 이광석;엄득하;김창원;변상윤;손동환;공경열;김병민;이정환
    • 소성∙가공
    • /
    • 제20권6호
    • /
    • pp.439-449
    • /
    • 2011
  • The temperature distribution and subsequent permanent deformation of SS400 carbon steel plate subjected to an induction-based line heating process were studied by a numerical method involving coupled 3-D electromagnetic-thermal-structural analysis. The numerical study revealed that the amount of permanent deformation is strongly related to the Joule loss caused by such process conditions as input power and moving speed of the heat source. To validate the numerical analysis results, line heating experiments were carried out with a high frequency(HF) induction heating(IH) equipment capable of bending thick plate with the moving accuracy of ${\pm}0.1mm$ in heating coil position. The amount of permanent deformation increased with decreasing moving speed and increasing input power.

외부변형이 섬유보강콘크리트의 인성에 미치는 영향 (Influence of Extraneous Deformation on the Toughness of Fiber Reinforced Concrete)

  • 김경수;고영주;임정환;배주성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권1호
    • /
    • pp.111-120
    • /
    • 2000
  • This study discusses the issues related to the accuracy of deflection measurement in the testing of FRC. Some deflection methods may include large extraneous deformations. such as local crushing at the loading points, elastic and inelastic deformations of the loading fixture, etc. A faulty load-deflection curve will be obtained if an unstable deflection measuring system is used, and incorrect toughness evaluation can be reached on the basis of this faulty curve. In this paper, the discussion will focus on the effects of the deflection measuring system on both the measurement of the load-deflection response of FRC and the evaluation of FRC toughness. It is observed that ASTM toughness indices which is based on measuring deflection at first cracking is influenced significantly by extraneous deformation in deflection measurement. But extraneous deformation in deflection measurement result in negligible errors in toughness evaluation using JSCE and JCI definition. However, in order to evaluate toughness accuracy, it is desirable to use net load-deflection curve eliminated extraneous deformation.

  • PDF

Accuracy and robustness of hysteresis loop analysis in the identification and monitoring of plastic stiffness for highly nonlinear pinching structures

  • Hamish Tomlinson;Geoffrey W. Rodgers;Chao Xu;Virginie Avot;Cong Zhou;J. Geoffrey Chase
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.101-111
    • /
    • 2023
  • Structural health monitoring (SHM) covers a range of damage detection strategies for buildings. In real-time, SHM provides a basis for rapid decision making to optimise the speed and economic efficiency of post-event response. Previous work introduced an SHM method based on identifying structural nonlinear hysteretic parameters and their evolution from structural force-deformation hysteresis loops in real-time. This research extends and generalises this method to investigate the impact of a wide range of flag-shaped or pinching shape nonlinear hysteretic response and its impact on the SHM accuracy. A particular focus is plastic stiffness (Kp), where accurate identification of this parameter enables accurate identification of net and total plastic deformation and plastic energy dissipated, all of which are directly related to damage and infrequently assessed in SHM. A sensitivity study using a realistic seismic case study with known ground truth values investigates the impact of hysteresis loop shape, as well as added noise, on SHM accuracy using a suite of 20 ground motions from the PEER database. Monte Carlo analysis over 22,000 simulations with different hysteresis loops and added noise resulted in absolute percentage identification error (median, (IQR)) in Kp of 1.88% (0.79, 4.94)%. Errors were larger where five events (Earthquakes #1, 6, 9, 14) have very large errors over 100% for resulted Kp as an almost entirely linear response yielded only negligible plastic response, increasing identification error. The sensitivity analysis shows accuracy is reduces to within 3% when plastic drift is induced. This method shows clear potential to provide accurate, real-time metrics of non-linear stiffness and deformation to assist rapid damage assessment and decision making, utilising algorithms significantly simpler than previous non-linear structural model-based parameter identification SHM methods.

자전거 짐받이에 대한 구조적 내구성 해석 (Structure Structural Durability Analysis on Bike Carrier Basket)

  • 조재웅;한문식
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.70-76
    • /
    • 2013
  • This study investigates structural durability through the analyses of stress, fatigue life and vibration damage at bike carrier basket. As model 2 has less stress and deformation than model 1 on static structural analysis, model 2 becomes more durable than model 1. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. The amplitude deformations become highest at maximum response frequency of 2400Hz in cases of models 1 and 2. As the values of maximum equivalent stresses become within the allowable material stresses at two holes at the upper parts on models 1 and 2, these models become safe. The structural result of this study can be effectively utilized with the design of bike carrier basket by investigating prevention and durability against fatigue or vibration damage.

LCD 모니터의 구조해석 (Structural Analysis of LCD Monitor)

  • 이종선
    • 한국산학기술학회논문지
    • /
    • 제14권9호
    • /
    • pp.4191-4196
    • /
    • 2013
  • 본 논문은 LCD 모니터의 자유로운 회전방법 및 회전각도를 개발하기 위하여 두 가지 경우에 대해서 4가지 회전각도를 고려하여 구조해석을 실시하였다. 여기서 Case 1은 모니터의 무게중심에 회전축이 위치했을 때이고, Case 2는 회전축이 모니터의 무게중심보다 편심된 부분에 위치했을 경우이다. 현장에서 사용되는 LCD 모니터의 형상을 3차원 설계프로그램인 CATIA V5를 사용하여 모델링하였으며 모델링된 LCD 모니터에 대하여 3차원 유한요소해석 프로그램인 ANSYS를 사용하여 해석을 수행하여 응력, 변형률, 총변형량을 구하였다. 이 결과는 다채널용 LCD 모니터 개발에 활용될 예정이다.

파이프 융착기의 구조해석 및 설계변경 (Structural Analysis and Design Change of Pipe Butt Welding Machine)

  • 이종선
    • 한국산학기술학회논문지
    • /
    • 제11권11호
    • /
    • pp.4075-4079
    • /
    • 2010
  • 본 논문의 목적은 현재 도기가스, 상하수도 및 화학배관 파이프 등의 플라스틱 배관 공사에서 사용되는 파이프 융착기를 3차원 설계하고 융착 시 발생하는 문제점을 해결하기 위하여 구조해석에 의한 검증작업을 거쳐 구조를 개선한다. 현장에서 파이프 융착 작업 시 융착기 크램프에 크랙이 발생하므로 이를 개선하기 위하여 융착기의 구조를 변경하는 설계치를 제시함으로서 작업의 효율성을 높이고 기술경쟁력을 향상시킨다.

록킹 거동을 하는 꺽쇠형 강재 댐퍼의 횡변형 방지 효과 (The Effect of Preventing Lateral Deformation of the Clamp Type Steel Damper in Rocking Behavior)

  • 이현호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권5호
    • /
    • pp.141-148
    • /
    • 2021
  • 본 연구에서는 강재 댐퍼의 횡변형을 방지할 수 있는 기술을 검토하여, 꺽쇠형 댐퍼에 적용하였다. 실험방법은 기존 연구와 같이 록킹 거동을 적용하였다. 평가변수는 횡변형 방지 상세 없는 기존 연구결과(SV-260)와 횡변형 방지 상세가 적용된 V-1과 V-1R이다. 여기서 V-1은 횡변형 방지상세가 댐퍼 하단부에 있으며, V-1R은 횡변형 방지상세가 하단부 및 상단부에 있다. 최대 하중 발현 시, 모멘트, 변위비 및 에너지 소산능력을 SV-260을 기준으로 상대 평가한 결과, SV-260 대비 V-1 및 V-1R의 최대모멘트는 1.22배, 1.36배 증가하였으며, 최대변위비는 2.41배, 2.92배 증가하였다. 또한 에너지 소산능력도 각각 1.39배, 1.52배 증가하였다. 따라서 강재 댐퍼에 횡변형 방지 상세를 적용한 것은 적절한 것으로 평가되었다.

Experimental study on the deformation characteristics of RC beam-column subassemblages

  • Guo, Zixiong;Yang, Yong
    • Structural Engineering and Mechanics
    • /
    • 제21권4호
    • /
    • pp.393-406
    • /
    • 2005
  • Cyclic loading tests were carried out on six half-scale reinforced concrete beam-column subassemblages designed to the current Chinese Seismic Design Code for Buildings. The deformation behavior and restoring force characteristics of the subassemblages were studied. Emphasis was directed on their seismic behavior and deformation components. Based on test data and a simplified analysis model of the global and local deformation, the contribution of the deformation components due to beam flexure, column flexure, joint shear, and slippage of longitudinal reinforcement in the joint to the global deformation of subassemblages at different displacement amplitudes of cyclic loading was investigated.