• Title/Summary/Keyword: Structural damage analysis

Search Result 1,586, Processing Time 0.027 seconds

GIS Spatial Analysis of Vulnerability of Protected Cultivation Area to Meteorological Disaster : A Case Study of Jeollanambuk Province, South Korea (GIS를 이용한 시설재배의 기상재해 취약지역 해석 - 전라남북도의 사례를 중심으로 -)

  • Kim, Dong Hyeon;Kang, Dong Hyeon;Lee, Si Young;Son, Jin Kwan;Park, Min Jung;Yoon, Yong-Cheol;Yun, Sung-Wook
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.87-99
    • /
    • 2017
  • Recently the increase in an abnormal climate events and meteorological disasters which causes a great damage to greenhouse facilities. To minimize and evaluate the expected damages it is necessary to prepare countermeasures and a management system in advance. For this purpose, a quantitative analysis of weather and abnormal climate are needed to investigate protected cultivation areas which are vulnerable to natural disasters. This study focused on protected cultivation areas in Jeolla province, South Korea. Surrogate variables were calculated to analyze the vulnerable areas to meteorological disasters, and spatial distribution analysis was also performed by using GIS to present vulnerable areas on map. The map thus created and was compared with actual data of damages by meteorological disasters which occurred in target areas. The result of the comparison is as follows: About 50% of the target areas showed an agreement between the map created in this study and the actual data, these areas includes Gwangju metropolitan city, Naju city, Yeongam County, Jangseong County, Hampyeong County, and Haenam County. On the other hand, other areas, including Gunsan city, Mokpo city, and Muan County, suffered low damage in spite of high levels of vulnerability to meteorological disasters. This result was considered to be affected by such variables as different structural designs and management systems of greenhouses by region. This study carried out an analysis of meteorological data to find out more detailed vulnerability to protected cultivation area and to create a map of vulnerable protected cultivation areas. In addition, the map was compared with the record of natural disasters to identify actual vulnerable areas. In conclusion, this study can be utilized as basic data for preventing and reducing damages by meteorological disasters in terms of design and management of greenhouses.

Freeze-thaw Resistance Estimation of Concrete using Surface Roughness and Image Analysis (콘크리트의 동결융해 저항성 추정을 위한 표면 거칠기 및 이미지 분석의 적용성)

  • Lee, Binna;Lee, Jong Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • As part of a research dedicated to the field evaluation of the durability of concrete subjected to freezing-thawing, this study analyzes the relationship between the surface roughness and the relative dynamic elastic modulus through image analysis. Four mix compositions with water-to-binder ratios (W/B) of 40%, 50%, 60% and 70% and without AE agent were considered to provoke early freezing. The basic physical properties of the mixes including the relative dynamic elastic modulus and the compressive strength were first evaluated experimentally according to W/B. Then, tests were performed to measure the surface roughness followed by photographs and SEM image analysis. The measured surface roughness tended to increase with larger number of freezing-thawing cycles regardless of W/B. The relative dynamic elastic modulus appeared to increase gradually with the number of cycles for the relatively denser mixes with W/B of 40% and 50%. Besides, the surface roughness increased only at rupture for the mixes with W/B of 60% and 70%. Moreover, the analysis of the photographs of the surface of the mixes with W/B of 40% and 50% revealed that the degradation progressed gradually from the surface with the freezing-thawing cycles. However, for the mixes with W/B of 60% and 70%, apparent change of the surface remained very insignificant until rupture at which damage like cracking could be observed. Consequently, the analysis of surface photograph or the measurement of the surface roughness presented some limitation in assessing the degree of freezing-thawing-induced degradation in case of relatively porous specimens. On the other hand, the photograph and surface roughness appeared to be sufficient for assessing such degradation for the mixes with W/B of 40% and 50%. Accordingly, the image of the surface and the surface roughness are potentially applicable on site for the assessment of freezing-thawing damages in relatively dense mixes.

A study on the flow induced vibration on a heat exchanger circular cylinder (열교환 단일 원관의 유동 유발 진동 특성에 관한 연구)

  • Ha, Ji Soo;Lee, Boo Youn;Shim, Sung Hun
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.109-114
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. The present study examined the results of the previous experimental researches for the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared from the present CFD analysis. For the previous mentioned purpose, the present CFD analysis introduced a single circular cylinder and calculated with the unsteady laminar flow over the cylinder. The characteristics of vortex shedding and lift fluctuation over the cylinder was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD over a single circular cylinder was established from the present CFD study.

Transient Structural Analysis of Piston and Connecting Rods of Reciprocating Air Compressor Using FEM (FEM을 이용한 왕복동 공기압축기의 피스톤 및 커넥팅로드의 구조해석)

  • Pham, Minh-Ngoc;Yang, Chang-Jo;Kim, Jun-Ho;Kim, Bu-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.393-399
    • /
    • 2017
  • In a reciprocating compressor, the piston and connecting rod are important parts. Excess mechanical stress on these parts may cause damage, and broken parts are expensive and difficult to replace. Therefore, it is necessary to analyze the mechanical stress affecting durability and longevity. The main purpose of this study was to identify locations of maximum stress on pistons and connecting rods. Based on dynamic calculation of the working process of a specific air compressor, an analysis of piston and connecting rod performance has been completed. A three-dimensional model for the air compressor's pistons and connecting rods was built separately, and FEM analysis of these components was carried out using a numerical method. The pistons were loaded by pressure which was changed according to crankshaft angle without thermal boundary conditions. The simulation results were used to predict and estimate stress concentration as well as the value of this stress on pistons and connecting rods. The maximum equivalent stress calculated are over 190 MPa on pistons and 123 MPa on connecting rods at crank angle $135^{\circ}$ and $225^{\circ}$ but these are under tensile yield strength. Besides, the calculated safety factors of connecting rods and pistons is higher than 1. Moreover, the results obtained can be used to provide manufacturers with references to optimize the design of pistons and connecting rods for reciprocating compressors.

Study of Blast Ground Vibration & Noise Measurements In-situ and Effect Analysis for Numerical Analysis, Rational Blasting Design at an Eel Farm (양만장의 발파 진동소음 현장측정과 수치해석을 통한 영향검토 및 합리적인 발파설계 연구)

  • Lee Song;Kim Sung-Ku;Rhee Yong-Ho
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.179-188
    • /
    • 2006
  • The vibration or/and noise generated by blast operations might cause not only structural damage to properties but mentally also to humans and animals. For that reason, maximum permitted vibration and noise levels are set by sensitivities of structures and they are used for the management of blast vibration. It is known that the fish lived in water are more sensitive to vibration than land animals, and thus the adverse impact of the blasting on fish farms should be very concerned. This study investigated the vibration and noise levels at a large eel farm located some 840 meters of the blasting site through the large real-scale experiments of blastings, prior to conducting the actual blasting. As a result, it was found that the noise met the requirement to be within maximum permitted level, while the ground vibration exceeded the permitted vibration. Accordingly, the impact of the excess vibration was investigated by an existing empirical method and verified by a new three dimensional numerical analysis. In this study, such an inspection process was briefly described, and a method was suggested for the examination of possible adverse effects from blasting on vibration-sensitive structures like the eel farm. The study also introduced a design method that controls the blast effects - ground vibration and noise.

A Study on the Characteristics of Lift and Drag Fluctuation Power Spectral Density in a Heat Exchanger Tube Array (전열관군에서 양력과 항력 변동의 PSD 특성 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.712-718
    • /
    • 2016
  • A heat exchanger tube array in a heat recovery steam generator is exposed to hot exhaust gas flow that can cause flow induced vibrations, which could damage the heat exchanger tube array. The characteristics of flow induced vibration in the tube array need to be established for the structural safe operation of a heat exchanger. Several studies of the flow induced vibrations of typical heat exchangers have been conducted and the nondimensional PSD (Power Spectral Density) function with the Strouhal number, fD/U, had been derived using an experimental method. The present study examined the results of the previous experimental research on the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array was determined from the present CFD analysis. The present CFD analysis introduced circular cylinder tube array and calculated using unsteady laminar flow for the tube array. The characteristics of lift and drag fluctuations over the cylinder tube array was investigated. The derived nondimensional lift and drag PSD was compared with the results of the previous experimental research and the characteristics of lift and drag PSD for a circular cylinder tube array was established from the present CFD study.

A Study on the Characteristics of Lift Fluctuation Power Spectral Density in a Heat Exchanger Tube Array (전열관군에서 양력 변동의 PSD 특성 연구)

  • Ha, Ji-Soo;Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6641-6646
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed to establish the characteristics of flow induced vibration in the tube array for the structural safe operation of the heat exchanger. Several researches for the flow induced vibration of typical heat exchangers had been conducted and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. The present study examined the results of the previous experimental researches for the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared from the present CFD analysis. For the previous mentioned purpose, the present CFD analysis introduced circular cylinder tube array and calculated with the unsteady laminar flow for the tube array. The characteristics of lift fluctuation over the cylinder tube array was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD for circular cylinder tube array was established from the present CFD study.

A Study on the Analysis of Outside Mural Paintings treated in Maitreya Hall of Geumsan-sa Buddhist Temple, Korea (금산사미륵전 외벽화 보존처리된 벽체의 분석 연구)

  • Han, Kyeong-Soon;Lee, Sang-Jin;Lee, Haw-Soo
    • Journal of Conservation Science
    • /
    • v.26 no.4
    • /
    • pp.445-458
    • /
    • 2010
  • The deterioration and structural damage such as exfoliation, cracks, and separation of painted layer on the wall paintings of Maitreya Hall in Geumsan-sa temple have been accelerated since it was re-positioned to the original place after the dismantling from the building in 1993. The examination of which result and analysis described in this study, is a preliminary survey for establishing conservation plan of the wall paintings. It aimed at the understanding of the physical and chemical characteristics of the materials applied in the 1993 conservation. The research focused on the south walls which displayed the worst condition compared to other walls. Samples for the examination for the understanding of micro-structure, chemical composition, cristalisation, and particle distribution, were collected for finishing, middle, and consolidated layers of the walls between pillars and the ones between brackets. Those samples were collected from separated fragments of the walls. The sample analysis displayed that: 1. the 1993 conservation used the similar type of weathered soil as the original for the finishing layer, and such soil and sand for the middle layer; 2. those walls are composed of a group of mineral particles which are relatively equal in size and shape and in their distribution; 3. the mineral particles were cohered forming solid aggregate due to the application of acrylic resin for the reinforcement on the wall. The main composition of crystalisation on the first and the second reinforcement layers of the back walls were lime plaster ($CaSO_4{\cdot}2H_2O$). The overall examination confirmed that the priority of the future conservation treatment should be given to the removal of the first and the second layers of reinforcement and the treatment on the back walls which were partially consolidated.

The Power Spectral Density Characteristics of Lift and Drag Fluctuation on a Heat Exchanger Circular Tube (열교환 단일 원관의 양력과 항력 변동에 따른 PSD 특성 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. The present study examined the results of the previous experimental researches for the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared from the present CFD analysis. For the previous mentioned purpose, the present CFD analysis introduced a single circular cylinder and calculated with the unsteady laminar flow over the cylinder. The characteristics of vortex shedding and lift and drag fluctuation over the cylinder was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift and drag PSD over a single circular cylinder was established from the present CFD study.

Analysis of Applicability of Rapid Hardening Composite Mat to Railway Sites (초속경 복합매트의 철도현장 적용성 분석)

  • Jang, Seong Min;Yoo, Hyun Sang;Oh, Dong Wook;Batchimeg, Banzragchgarav;Jung, Hyuk Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.109-116
    • /
    • 2024
  • The Rapid Hardening Composite Mat (RHCM) is a product that improves the initial strength development speed of conventional Geosynthetic Cementitious Composite Mats (GCCM). It offers the advantage of quickly securing sufficient strength in railway slopes with insufficient formation level, and provides benefits such as preventing slope erosion and inhibiting vegetation growth. In this study, an analysis of the practical applicability of RHCM in railway settings was conducted through experimentation. The on-site applicability was assessed by categorizing it into fire resistance, durability, and stability, and conducting combustibility test, ground contact pressure test, and daily displacement analyses. In the case of South Korea, where a significant portion of the territory is composed of forested areas, the prevention of slope fires is imperative. To analyze the fire resistance of RHCM, combustibility tests were conducted as an essential measure. Durability was assessed through ground contact pressure tests to analyze the deformation and potential damage of RHCM caused by the inevitable use of small to medium-sized equipment on the construction surface. Furthermore, daily displacement analysis was conducted to evaluate the structural stability by comparing and analyzing the displacement and behavior occurring during the application of RHCM with railway slope maintenance criteria. As a result of the experiments, the RHCM was analyzed to meet the criteria for heat release rate and gas toxicity. Furthermore, the ground contact pressure was observed to be consistently above 50 kPa during the curing period of 4 to 24 hours under all conditions. Additionally, the daily displacement analyzed through field site experiments ranged from -1.7 mm to 1.01 mm, confirming compliance with the criteria.