• Title/Summary/Keyword: Structural composites

Search Result 942, Processing Time 0.024 seconds

Next Generation Lightweight Structural Composite Materials for Future Mobility Review: Applicability of Self-Reinforced Composites (미래모빌리티를 위한 차세대 경량구조복합재료 검토: 자기강화복합재료의 적용 가능성)

  • Mi Na Kim;Ji-un Jang;Hyeseong Lee;Myung Jun Oh;Seong Yun Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • Demand for energy consumption reduction is increasing according to the development expectations of future mobility. Lightweight structural materials are known as a method to reduce greenhouse gas emissions and improve energy efficiency. In particular, fiber reinforced polymer composite (FRP) is attracting attention as a material that can replace existing metal alloys due to its excellent mechanical properties and light weight. In this paper, industrial applications and research trends of carbon fiber reinforced composites (CFRP, carbon FRP) and self-reinforced composites (SRC) were reviewed based on the reinforcement, polymer matrix, and manufacturing process. In order to overcome the expensive process cost and long manufacturing time of the epoxy resin-based autoclave method, which is mainly used in the aircraft field, mass production of CFRP-applied electric vehicles has been reported using a high-pressure resin transfer molding process including fast-curing epoxy. In addition, thermoplastic resin-based CFRP and interface enhancement methods to solve the recycling issue of carbon fiber composites were reviewed in terms of materials and processes. To form a perfect matrix-reinforcement interface, which is known as the major factor inducing the excellent mechanical properties of FRP, studies on SRC impregnated with the same matrix in polymer fibers have been reported. The physical and mechanical properties of SRC based on various thermoplastic polymers were reviewed in terms of polymer orientation and composite structure. In addition, a copolymer matrix strategy for extending the processing window of highly drawn polypropylene fiber-based SRC was discussed. The application of CFRP and SRC as lightweight structural materials can provide potential options for improving the energy efficiency of future mobility.

Synthesis and Characterization of SnO2-CoO/carbon-coated CoO Core/shell Nanowire Composites (SnO2-CoO/carbon-coated CoO core/shell 나노선 복합체의 합성 및 구조분석)

  • Lee, Yu-Jin;Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.360-365
    • /
    • 2014
  • $SnO_2-CoO$/carbon-coated CoO core/shell nanowire composites were synthesized by using electrospinning and hydrothermal methods. In order to obtain $SnO_2-CoO$/carbon-coated CoO core/shell nanowire composites, $SnO_2-Co_3O_4$ nanowire composites and $SnO_2-Co_3O_4$/polygonal $Co_3O_4$ core/shell nanowire composites are also synthesized. To demonstrate their structural, chemical bonding, and morphological properties, field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were carried out. These results indicated that the morphologies and structures of the samples were changed from $SnO_2-Co_3O_4$ nanowires having cylindrical structures to $SnO_2-Co_3O_4/Co_3O_4$ core/shell nanowires having polygonal structures after a hydrothermal process. At last, $SnO_2-CoO$/carbon-coated CoO core/shell nanowire composites having irregular and high surface area are formed after carbon coating using a polypyrrole (PPy). Also, there occur phases transformation of cobalt phases from $Co_3O_4$ to CoO during carbon coating using a PPy under a argon atmosphere.

Behavior of Circular Concrete Cylinders Confined with Both Steel Spirals and Fiber Composites (나선형 철근 및 섬유에 의하여 동시에 구속된 원형 콘크리트 실린더의 거동)

  • Lee Jung-Yoon;Oh Young-Jun;Jeong Hoon-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.175-184
    • /
    • 2004
  • When the columns of existing RC structures are repaired with FRP composites, the core concrete of the columns is confined by both materials of steel spirals (or steel hoops) and FRP composites because the FRP composites wrap the existing columns which have been already confined with steel spirals or hoops. As the stress-strain curves of steel and fiber are different to each other, the behavior of concrete columns confined with both steel spiral and FRP composites is also different to that of concrete columns confined with only steel spiral or FRP composites. Twenty four RC cylinders were tested in order to observe the behavior of RC cylinders confined with both materials. The observed results of the test showed that the behavior of the test cylinders confined with both materials was quite different to that of cylinders confined with only one material.

Improved Electrical Properties of Graphene Transparent Conducting Films Via Gold Doping

  • Kim, Yoo-Seok;Song, Woo-Seok;Kim, Sung-Hwan;Jeon, Cheol-Ho;Lee, Seung-Youb;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.388-388
    • /
    • 2011
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. The physical properties of graphene depend directly on the thickness. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ~60 ${\Omega}/sq$ and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition,for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10~15 nm in mean size were decorated along the surface of the graphene after 1.0 MeV-e-beam irradiation. The fabrication high-performance TCF with optimized doping condition showed a sheet resistance of ~150 ${\Omega}/sq$ at 94% transmittance. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

A Study on the Fabrication and Mechanical Properties of $WC-Co-Al_2O_3$ Ceramic Composites Using WC Powders Synthesized by SHS Method and Commercial WC Powders (SHS 화학로법에 의해 합성된 WC 분말과 상용 WC 분말을 이용한 $WC-Co-Al_2O_3$ 세라믹 복합체의 제조 및 그 기계적 특성에 관한 연구)

  • Lee, K.R.;Cho, D.H.;Lee, H.B.;Park, S.
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1392-1400
    • /
    • 1995
  • WC-10wt%Co-Al2O3 ceramic composites, using both the SHS (Self-propagating High Temperature Synthesis) synthesized WC powder method and commercial WC powder, were prepared by varing WC-Co/Al2O3 vol% ratio and sintering temperature (1350℃∼1650℃) for 1 hr in Ar atmosphere. Mechanical characterization has been investigated by Instron meterial testing system and Vicker's hardness test. Compositional and structural chracterizations were carried out by energy-dispersive analysis of X-ray (EDAX) data and scanning electron microscope (SEM). Electrical characterization was carried out by the electrical resistivity measurement using 4-point probe method. As sintering period increased and Al2O3 contents decreased in WC-10wt%Co-Al2O3 ceramic composite, shrinkage and relative density increased, resulting in maximum values at 1600℃. Also the major matrix phase changed with increasing Al2O3 content from 0 to 100 vol%. It was also identified by SEM, EDAX, and electrical resistivity measurement. Based on the results of analysis of flexural strength, toughness and hardness, the mechanical properties of WC-10wt%Co-Al2O3 ceramic composites using the SHS synthesized WC powder were better than those WC-10wt%Co-Al2O3 ceramic composites using commercial WC powder because WC-10wt%Co-Al2O3 ceramic composites using the SHS synthesized WC powder were sintered very well due to small initial particle size. By the addition of 40 vol% Al2O3 [60(WC=10wt%Co)-40Al2O3], it was possible to obtain a proper candidate as a superalloy.

  • PDF

Investigation of Tensile Behaviors in Open Hole and Bolt Joint Configurations of Carbon Fiber/Epoxy Composites

  • Dong-Wook Hwang;Sanjay Kumar;Dong-Hun Ha;Su-Min Jo;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.259-263
    • /
    • 2023
  • This study investigated the open hole tensile (OHT) properties of carbon fiber/epoxy composites and compared them to bolt joint tensile (BJT) properties. The net nominal modulus and strength (1376 MPa) were found to be higher than the gross nominal strength (1041 MPa), likely due to increasing hole size. The OHT and BJT specimens exhibited similar stiffness, as expected without bolt rotation causing secondary bending. OHT specimens experienced a sharp drop in stress indicating unstable crack propagation, delamination, and catastrophic failure. BJT specimens failed through shear out on the bolt side and bearing failure on the nut side, involving fiber kinking, matrix splitting, and delamination, resulting in lower strength compared to OHT specimens. The strength retention of carbon fiber/epoxy composites with open holes was 66%. Delamination initiation at the hole's edge caused a reduction in the stress concentration factor. Filling the hole with a bolt suppressed this relieving mechanism, leading to lower strength in BJT specimens compared to OHT specimens. Bolt joint efficiency was calculated as 15%. The reduction in strength in bolted joints was attributed to fiber-matrix splitting and delamination, aligning with Hart Smith's bolted joint efficiency diagram. These findings contribute to materials selection and structural reliability estimation for carbon fiber/epoxy composites. They highlight the behavior of open hole and bolt joint configurations under tensile loading, providing valuable insights for engineering applications.

Study on Structural Design of Glass/epoxy Composite Blade and Tower of Vertical Axis Wind Turbine System (수직축 풍력 발전 시스템의 유리/에폭시 복합재 블레이드 및 타워 구조 설계 연구)

  • Park, Hyunbum
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.104-110
    • /
    • 2018
  • This study is to propose the structural design and analysis procedure about composite blade and tower of vertical axis wind turbine technology. In this study, structural design of tower for vertical axis wind turbine was performed after vertical blade design and manufacturing. The structural design requirement and specification of blade and tower was investigated. After tower of structural design, the structural analysis of the tower was conducted by the finite element method. It was performed that the stress, deformation and natural frequency analysis at the applied loading. The design modification of tower configuration was proposed by structural analysis. It was confirmed that the final designed tower structure is safety through the structural analysis.

Zn-Ion Coated Structural $SiO_2$ Filled LDPE: Effects of Epoxy Resin Encapsulation

  • Reddy C. S.;Das C. K.;Agarwal K.;Mathur G N.
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.223-228
    • /
    • 2005
  • In the present work, a low-density polyethylene (LDPE) composite, filled with Zn-ion coated structural silica encapsulated with the diglycidyl ether of bisphenol-A (DGEBA), was synthesized using the conventional melt-blending technique in a sigma internal mixer. The catalytic activity of the Zn-ions (originating from the structural silica) towards the oxirane group (diglycidyl ether of bisphenol-A (DGEBA): encapsulating agent) was assessed by infrared spectroscopy. Two composites, each with a filler content of $2.5 wt\%$ were developed. The first one was obtained by melt blending the Zn-ion coated structural silica with LDPE in a co-rotating sigma internal mixer. The second one was obtained by melt blending the same LDPE, but with DGEBA encapsulated Zn-ion coated structural silica. Epoxy resin encapsulation of the Zn-ion coated structural silica resulted in its having good interfacial adhesion and a homogeneous dispersion in the polymer matrix. Furthermore, the encapsulation of epoxy resin over the Zn-ion coated structural silica showed improvements in both the mechanical and thermal properties, viz. a $33\%$ increase in the elastic modulus and a rise in the onset degradation temperature from 355 to $371^{\circ}C$, in comparison to the Zn-ion coated structural silica.

A Study on Microstructure and Mechanical Properties of TiC/Steel Composites Fabricated by Powder Metallurgy Process (분말야금공정으로 제조된 TiC/steel 금속복합재료의 미세조직 및 기계적 물성 연구)

  • Lee, Jihye;Cho, Seungchan;Kwon, Hansang;Lee, Sang-Kwan;Lee, Sang-Bok;Kim, Daeha;Kim, Junghwan
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.311-316
    • /
    • 2021
  • In this study, TiC/steel metal matrix composites were fabricated by powder metallurgy process using Fealloy powders with 3 wt.% Cr and 10 wt.% Cr, respectively, as matrix material. Subsequently, the composite samples were heat treated by the annealing and quenching-tempering(Q-T), respectively, to understand the effect of heat treatment on the mechanical properties of the composites. The correlation between microstructure and structural strength depending on the chromium content and the heat treatment conditions was studied through tensile, compressive, and transverse rupture test and microstructural analysis. In the case of TiC/steel composite containing 10 wt.% Cr, the tensile strength and transverse rupture strength at room temperature were significantly lowered by the influence of coarse chromium carbide formed at the TiC/steel interface. On the other hand, both TiC/steel composites containing 3 wt.% Cr and 10 wt.% Cr showed much higher compressive strength of about 4 GP after quenching-tempering compared to the annealed specimens regardless of the presence of the chromium carbide.