• Title/Summary/Keyword: Structural acoustic control

Search Result 46, Processing Time 0.023 seconds

The Determination of Transducer Locations for Active Structural Acoustic Control of the Radiated Sound from Vibrating Plate (평판에서 방사되는 소음의 능동구조소음제어를 위한 변환기의 위치결정)

  • 김흥섭;홍진석;이충휘;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.694-701
    • /
    • 2002
  • In this paper, through the study on locations of structural transducers for active control of the radiated sound from the vibrating plate, the active structural acoustic control (ASAC) system is proposed. And, for the evaluation of the proposed location, the experiment of the active structural acoustic control is implemented using the multi-channel filtered-x LMS algorithm and an additional filter (Acoustic Prediction Filter) to estimate the radiated sound using the acceleration signals of the plate. The structural transducers are piezoceramic actuator (PZT) and accelerometer. PZT is used as an actuator to reduce the vibration and the radiated sound. To maximize the control performance, each PZT actuator is located at the position that has the largest control sensitivity of the plate bending moment in the direction of x and y coordinates and the optimal PZT location is validated experimentally. Also, to find the acoustic prediction filter accurately, two accelerometers are located at the positions that have the largest radiation efficiencies of the plate, and the proposed locations are validated by simulation using the Rayleigh integral. The multi-channel filtered-x LMS algorithm is introduced to control a complex 2-D structural vibration mode. Finding the locations of structural transducers for active structural acoustic control of the radiated sound, the active structural acoustic control (ASAC) system can be presented and validated by experiments using a real time control system.

Feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity

  • Bagha, Ashok K.;Modak, Subodh V.
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.273-283
    • /
    • 2017
  • This paper presents and compares three feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity. These are a) control strategy based on direct output feedback (DOFB) b) control strategy based on linear quadratic regulator (LQR) to reduce structural vibrations and c) LQR control strategy with a weighting scheme based on structural-acoustic coupling coefficients. The first two strategies are indirect control strategies in which noise reduction is achieved through active vibration control (AVC), termed as AVC-DOFB and AVC-LQR respectively. The third direct strategy is based on active structural-acoustic control (ASAC). This strategy is an LQR based optimal control strategy in which the coupling between the various structural and the acoustic modes is used to design the controller. The strategy is termed as ASAC-LQR. A numerical model of a 3-D rectangular box cavity with a flexible plate (glued with piezoelectric patches) and with other five surfaces treated rigid is developed using finite element (FE) method. A single pair of collocated piezoelectric patches is used for sensing the vibrations and applying control forces on the structure. A comparison of frequency response function (FRF) of structural nodal acceleration, acoustic nodal pressure, and piezoelectric actuation voltage is carried out. It is found that the AVC-DOFB control strategy gives equal importance to all the modes. The AVC-LQR control strategy tries to consume the control effort to damp all the structural modes. It is seen that the ASAC-LQR control strategy utilizes the control effort more intelligently by adding higher damping to those structural modes that matter more for reducing the interior noise.

Active Structural Acoustic Control for Radiated Sound Reduction in Plate (평판에서의 방사소음 저감을 위한 능동구조음향제어)

  • Hong, Jin-Seok;Oh, Jae-Eung;Lee, You-Yub;Shin, Joon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.608-612
    • /
    • 2000
  • Active control of sound radiation(using active structural acoustic control) from a vibrating rectangular plate by a steady-state harmonic point force disturbance is experimentally studied. Control structural input are achieved by two piezoceramic actuators bonded to the surface of the panel. Two accelerometers are implemented as error sensors. Estimated radiated sound signals using vibro-acoustic path transfer function are used as error signals. The vibro-acoustic path transfer function represents system between accelerometers and microphones. The control approach are based on a multi-channel filtered-x LMS algorithm. The results demonstrate that attenuation of sound levels of 3dB, 13dB are achieved.

  • PDF

Active Structural Acoustic Control for Reduction of Radiated Sound from Structure (구조물에서 방사되는 소음을 저감하기 위한 능동구조음향제어)

  • O, Jae-Eung;Hong, Jin-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1410-1415
    • /
    • 2001
  • Active control of sound radiation from a vibrating rectangular plate by a steady-state harmonic point force disturbance is experimentally studied. Structural excitation is achieved by two piezoceramic actuators mounted on the panel. Two accelerometers are implemented as error sensors. Estimated radiated sound signals using vibro-acoustic path transfer function are used as error signals. The vibro-acoustic path transfer function represents system between accelerometers and microphones. The approach is based on a multi-channel filtered-x LMS algorithm. The results shows that attenuation of sound levels of 11dB, 10dB is achieved.

Sound Control of Structural-acoustic Coupling System Using Optimum Layout of Absorbing Material and Damping Material (흡음재 및 제진재의 최적배치를 이용한 구조-음향 연성계의 소음제어)

  • Kim, Dong-Young;Hong, Do-Kwan;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.161-168
    • /
    • 2005
  • The absorbing material is mostly used to changing the acoustic energy to the heat energy in the passive control, and that consists of the porous media. That controls an air borne noise while the stiffened plates, damping material and additional mass control a structure borne noise. The additional mass can decrease the sound by mass effect and shift of natural frequency, and damping material can decrease the sound by damping effect. The passive acoustic control using these kinds of control materials has an advantage that is possible to control the acoustic in the wide frequency band and the whole space at a price as compared with the active control using the various electronic circuit and actuator. But the space efficiency decreased and the control ability isn't up to the active control. So it is necessary to maximize the control ability in the specific frequency to raise the capacity of passive control minimizing the diminution of space efficiency such an active control. Therefore, the characteristics of control materials and the optimum layout of control materials that attached to the boundary of structure-acoustic coupled cavity were studied using sequential optimization on this study.

Active Noise Control Using Sensory Actuator (자기감응 액추에이터를 이용한 능동소음제어)

  • Go, Byeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1573-1581
    • /
    • 1996
  • This paper present as experimental demonstratio of DSP and a sensory actuator that is used to actively control sound transmission/radiation through a vibrating plate. A plane acoustic wave incident on a clamped, thin circular plate was used as a noise source, and a sensory actuator bounded to the plate was used to control and sense vibration of the plate. The sound transmission reduction problem was tranformed as a structural vibration control problem that actively control the structural vibration modes coupled to acoustic modes. The results show that the first structural vibration mode is controlled with a reduction of 78 percent in the displacement and velocity of the plate. This corresponds to a 13dB reduction in the acoustic response. These experimental results indicate that a sensory actuator bounded to the plate can be employed to attenuate the sound transmitted to radiated from the plate.

Using structural intensity approach to characterize vibro-acoustic behavior of the cylindrical shell structure

  • Wang, Yuran;Huang, Rong;Liu, Zishun
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.297-319
    • /
    • 2018
  • In this paper, the vibro-acoustic behaviors of vibrational cylindrical shells are investigated by using structural intensity approach. The reducing interior noise method for vibrating cylindrical shells is proposed by altering and redistributing the structural intensity through changing the damping property of the structure. The concept of proposed novel method is based on the properties of structural intensity distribution on cylindrical shells under different load and damping conditions, which can reflects power flow in the structures. In the study, the modal formulas of structural intensity are developed for the steady state vibration of cylindrical shell structures. The detailed formulas of structural intensity are derived by substituting modal quantities, in which the effect of main parameters such as weight coefficients and distribution functions on structure intensity are analyzed and discussed. Numerical simulations are first carried out based on the structural intensity analytical solutions of modal formulas. Through simulating the coupling vibration and acoustical radiation problems of cylindrical shell, the relationship between vibro-acoustic and structural intensity distribution is derived. We find that for cylindrical shell, by properly arranging damping conditions, the structural intensity can be efficiently changed and further the noise property can be improved. The proposed methodology has important implications and potential applications in the vibration and noise control of fuselage structure.

Reduction of Radiated Noise by Eigen-property Control (구조물의 고유특성 제어를 통한 방사 소음 저감)

  • 최성훈
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.376-382
    • /
    • 2004
  • The interaction between a vibrating structure and a surrounding acoustic medium determines the acoustic power propagating into the far-field. A straightforward method to reduce the radiated power is to reduce the vibration of the structure. However it is more efficient to control the modes of the structure separately since each vibration mode of the structure has different radiation efficiency. An efficient method to reduce the sound radiation in the low frequency region is proposed by reducing the radiation efficiency of the structure. Numerical simulations are carried out for a simply-supported beam in which the feed-forward control is applied to reduce the volume velocity of each structural mode. This method is found to be very efficient in reducing low frequency sound radiation.

Noise Control of Hard Disk Drive Using Structural Mobility Analysis (STRUCTURAL MOBILITY 분석을 통한 하드 디스크 드라이브의 소음제어(현장개발사례: SAMSUNG HDD 'SPINPOINT V20/P20 SERIES' ))

  • Kang, Seong-Woo;Han, Yun-Sik;Hwang, Tae-Yeon;Son, Young;Oh, Dong-Ho;Pham, Tho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.911-916
    • /
    • 2001
  • Structural acoustic modification method based on the structural mobility analysis is applied to reduce the structure-borne noise radiated from hard disk drive system. Sound intensity techniques and ODS(Operational Deflection Shape) techniques are also used in order to provide the structural acoustic information for the mobility modification. The sound intensity is for the acoustic visualization of the noise source locations, and the ODS is for the visualization of the vibration pattern and its dynamic characteristics of the noise sources. Using visualization information of sound and vibration, local structural input mobility is reduced in the frequency band of interest by designing asymmetrical wave-stringer structure in the wave-number domain as well as frequency domain. The overall sound pressure level is reduced by 4dB and its controlled sound power radiated from the disk drive is proved to under 2.8Bel in idle-spinning mode and 3.1 Bel in random-seeking mode, which are the lowest noise levels in the hard disk drive industry.

  • PDF

Vibration and Noise Control of Slab Using the Mass Type Damper (질량형 댐퍼를 이용한 바닥판의 진동 및 소음 저감)

  • Hwang, Jae-Seung;Park, Sung-Chul;Kim, Hong-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.597-602
    • /
    • 2007
  • It is proposed to analyze the vibration of slab with MTMD and vibration-induced noise. Substructure synthesis is introduced to develope the interaction between the slab and MTMD which are defined in different space and acoustic power is obtained from the velocity field of slab. Numerical analysis is performed to show that the vibration and noise of slab can be reduced by MTMD. A living room of wall type apartment including the wall and MTMD is modeled and analyzed by FEM program Numerical analysis shows that the vibration and noise control effect is different depending on the location and mass ratio of MTMD. Futhermore, noise is more effectively reduced when the vibration of higher modes of slab are reduced rather than lower modes.

  • PDF