• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.024 seconds

Effect of Polycarbonate Covering Sheet on Greenhouse Indoor Environments and Growth Behavior of Cherry Tomatoes

  • Choi, Kyung Yun;Kim, Soo Bok;Bae, Seokhu;Yoon, Jeong-Hwan;Yun, Ju-Ho;Kim, Namil
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.114-119
    • /
    • 2020
  • The effect of a greenhouse-covering material on its indoor environment and on the characteristics of cherry tomatoes grown in it was investigated. The conventional polyethylene (PE) film on the greenhouse roof was replaced by a polycarbonate (PC) sheet, while maintaining the main structural frame intact. Color changes and the formation of water droplets on the PC surface were avoided by applying coextrusion and coating layers. When compared to the PE greenhouse, the PC greenhouse enabled increased light transmittance and thus a higher indoor temperature during both summer and winter. The thermal insulating property of the PC sheet effectively reduced the heating loss by approximately 55% during winter. The cherry tomatoes grown in the PC greenhouse exhibited superior fruit characteristics in terms of size, weight, and sugar content. The total amount of cherry tomatoes produced per unit area (1,000 ㎡) in the PC greenhouse was found to be greater by approximately 19% compared to that in the PE greenhouse.

Synthesis of Si3N4 from Domestic Silica-stone by Direct Nitriding Method (규석광으로부터 직접 질화법에 의한 질화규소의 합성)

  • Sohn Yong-Un;Joo Sung-Min;Chung Hun-Saeng
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.358-362
    • /
    • 2004
  • $Si_3$$N_4$ ceramics have been identified as one of the promising structural ceramics. This study has been carried out to investigate of the synthetic behaviors of $Si_3$$N_4$ derived from domestic silica-stone by direct nitriding method. The silicon nitridation reaction has been studied in the temperature range of $1300~1550^{\circ}C$. Below the $1400^{\circ}C$, the nitriding rate was measured to be 16%. For the temperatures higher than the $1400^{\circ}C$, $\beta$-$Si_3$$N_4$ phase was formed mainly, and the nitriding rate showed above 98%. With the increasing of sample weight of silicon powder, the nitriding rate and $\beta$-$Si_3$$N_4$ phase increased at $1400^{\circ}C$ for 2 hours. The shape and particle size of$ Si_3$$N_4$ powder synthesized at $1400^{\circ}C$ for 2 hours showed the irregular angular-type and 10 $\mu\textrm{m}$, respectively.

Properties Vacuum · Reduced Air pressure Concrete (진공감압조건에서 콘크리트의 물리적 특성)

  • 이세현;심종우;서치호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 2002
  • Vacuum concrete manufactured by vacuuming and decompressing fresh concrete. It is known to have improvement on abrasion and strength by making a structural confinement through elimination of internal gap. It has been implemented on buildings floors, concrete dam, etc. in developed countries. This study was aimed to monitor changes in physical characteristics such as strength and slump of concrete influenced by changes of vacuum, decompression level and combination condition during concrete manufacturing process. The results are as follows: It is indicated that decompressed concrete shoved increase in unit weight and compressive strength by compact compression phenomenon influenced by decrease in internal gap caused by diminishing oxygen. However, continuous research is necessary to resolve problems on construction, design and durability.

Structural Effects of Sulfated-Glycoproteins from Stichopus japonicus on the Nitric Oxide Secretion Ability of RAW 264.7 Cells

  • Cao, Rong-An;Lee, Su-Han;You, SangGuan
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2014
  • The effect of various levels of proteins, sulfates, and molecular weight ($M_w$) of a sulfated-glycoprotein ($NF_3$) from a sea cucumber, Stichopus japonicus, on nitric oxide (NO) releasing capacity from RAW 264.7 cells was investigated. The $NF_3$ derivatives had various amounts of proteins (4.8~11.2%) and sulfates (6.8~25.2%) as well as different $M_w$ ($640.3{\times}10^3{\sim}109.2{\times}10^3g/mol$). $NF_3$ was able to stimulate RAW 264.7 cells to release NO with lower protein contents, indicating that the protein moiety was not an important factor to stimulate macrophages. On the other hand, the NO inducing capacity was significantly reduced with decreased levels of sulfates and $M_w$, implying that sulfates and $M_w$ played a pivotal role in activating RAW 264.7 cells. It was not clear why sulfates and a certain range of $M_w$ were essential for stimulating macrophages. It appeared that certain levels of sulfates and $M_w$ of sulfated-glycoproteins were required to bind to the surface receptors on RAW 264.7 cells.

Optimum tuned mass damper design for preventing brittle fracture of RC buildings

  • Nigdeli, Sinan Melih;Bekdas, Gebrail
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.137-155
    • /
    • 2013
  • Brittle fracture of structures excited by earthquakes can be prevented by adding a tuned mass damper (TMD). This TMD must be optimum and suitable to the physical conditions of the structure. Compressive strength of concrete is an important factor for brittle fracture. The application of a TMD to structures with low compressive strength of concrete may not be possible if the weight of the TMD is too much. A heavy TMD is dangerous for these structures because of insufficient axial force capacity of structure. For the preventing brittle fracture, the damping ratio of the TMD must be sufficient to reduce maximum shear forces below the values proposed in design regulations. Using the formulas for frequency and damping ratio related to a preselected mass, this objective can be only achieved by increasing the mass of the TMD. By using a metaheuristic method, the optimum parameters can be searched in a specific limit. In this study, Harmony Search (HS) is employed to find optimum TMD parameters for preventing brittle fracture by reducing shear force in additional to other time and frequency responses. The proposed method is feasible for the retrofit of weak structures with insufficient compressive strength of concrete.

Flexural ductility of reinforced HSC beams strengthened with CFRP sheets

  • Hashemi, Seyed Hamid;Maghsoudi, Ali Akbar;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.403-426
    • /
    • 2008
  • Externally bonding fiber reinforced polymer (FRP) sheets with an epoxy resin is an effective technique for strengthening and repairing reinforced concrete (RC) beams under flexural loads. Their resistance to electro-chemical corrosion, high strength-to-weight ratio, larger creep strain, fatigue resistance, and nonmagnetic and nonmetallic properties make carbon fiber reinforced polymer (CFRP) composites a viable alternative to bonding of steel plates in repair and rehabilitation of RC structures. The objective of this investigation is to study the effectiveness of CFRP sheets on ductility and flexural strength of reinforced high strength concrete (HSC) beams. This objective is achieved by conducting the following tasks: (1) flexural four-point testing of reinforced HSC beams strengthened with different amounts of cross-ply of CFRP sheets with different amount of tensile reinforcement up to failure; (2) calculating the effect of different layouts of CFRP sheets on the flexural strength; (3) Evaluating the failure modes; (4) developing an analytical procedure based on compatibility of deformations and equilibrium of forces to calculate the flexural strength of reinforced HSC beams strengthened with CFRP composites; and (5) comparing the analytical calculations with experimental results.

Optimum design of steel framed structures including determination of the best position of columns

  • Torkzadeh, P.;Salajegheh, J.;Salajegheh, E.
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.343-359
    • /
    • 2008
  • In the present study, an efficient method for the optimum design of three-dimensional (3D) steel framed structures is proposed. In this method, in addition to choosing the best position of columns based on architectural requirements, the optimum cross-sectional dimensions of elements are determined. The preliminary design variables are considered as the number of columns in structural plan, which are determined by a direct optimization method suitable for discrete variables, without requiring the evaluation of derivatives. After forming the geometry of structure, the main variables of the cross-sectional dimensions are evaluated, which satisfy the design constraints and also achieve the least-weight of the structure. To reduce the number of finite element analyses and the overall computational time, a new third order approximate function is introduced which employs only the diagonal elements of the higher order derivatives matrices. This function produces a high quality approximation and also, a robust optimization process. The main feature of the proposed techniques that the higher order derivatives are established by the first order exact derivatives. Several examples are solved and efficiency of the new approximation method and also, the proposed method for the best position of columns in 3D steel framed structures is discussed.

Simulation of the behaviour of RC columns strengthen with CFRP under rapid loading

  • Esfandiari, Soheil;Esfandiari, Javad
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.319-332
    • /
    • 2016
  • In most cases strengthening reinforced concrete columns exposed to high strain rate is to be expected especially within weak designed structures. A special type of loading is instantaneous loading. Rapid loading can be observed in structural columns exposed to axial loads (e.g., caused by the weight of the upper floors during a vertical earthquake and loads caused by damage and collapse of upper floors and pillars of bridges).Subsequently, this study examines the behavior of reinforced concrete columns under rapid loading so as to understand patterns of failure mechanism, failure capacity and strain rate using finite element code. And examines the behavior of reinforced concrete columns at different support conditions and various loading rate, where the concrete columns were reinforced using various counts of FRP (Fiber Reinforcement Polymer) layers with different lengths. The results were compared against other experimental outcomes and the CEB-FIP formula code for considering the dynamic strength increasing factor for concrete materials. This study reveals that the finite element behavior and failure mode, where the results show that the bearing capacity increased with increasing the loading rate. CFRP layers increased the bearing capacity by 20% and also increased the strain capacity by 50% through confining the concrete.

Influence of dimensional ratio on collapse characteristics for the thin-walled structures of light weight (경량화용 박육부재의 형상비가 압궤특성에 미치는 영향)

  • 정종안;김정호;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.11-23
    • /
    • 1998
  • In this study, collapse test of thin-walled structure is performed under axially quasi-static and impact load in collapse characteristic to develop the optimum structural member for a light-oriented automobile. Furthermore, the energy-absorbing capacity is observed according to the variety of configuration(circular, square), aspect ratio in aluminum specimen to obtain basic data for the improved member of vehicle. In both quasi-static and impact collapse test, Al circular specimens collapse, in general, with axisymmetric mode in case of thin thickness while collapse with non-axisynmetric mode according to the thickness increase. For Al rectangular specimens, they collapse with axisymmetric mode in case of thin thickness, with mixed collapse mode according to the increase of thickness. In terms of initial max. load, Al square specimen turns out the best member among specimens, and then Al square, circular and circular with large scaling ratio, respectively. In case of quasi-static compression test, the absorbed energy per unit volume and mass shows higher in Al circular specimen, and then Al square, circular with large scaling ratio, respectively, according to shape ratio the absorbed energy per unit volume and mass in case of max. impact compression load is higher than that of static load. But the absorbed energy per unit volume and mass shows that Al circular specimen is the best member. Especially, unlike max. compression loan, the absorbed energy per unit volume and mass in impact test turns out the low value.

  • PDF

Piezoelectric Characteristics of Pb($Mg_{1/3}Nb_{2/3}$)$O_3$+ PZT Ceramics for Substrates of High-Frequency Devices (고주파소자의 기판용 Pb($Mg_{1/3}Nb_{2/3}$)$O_3$+ PZT 세라믹스의 압전특성)

  • 이개명;장낙원;김준한;이두희;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.60-64
    • /
    • 1990
  • In this studies, structural, dielectrical piezoelectrical properties and temperature stability of 0.05Pb(Pb($Mg_{1/3}Nb_{2/3}$)$O_3$+ 0.95Pb($Zr_{0.53}Tio_{0.47}$)$O_3$+$\alpha$[wt%] $Cr_2O_3$ piezoelectric ceramics fabricated by the Hot-Press method were investigated. And Poisson ratios of the specimens were measured in order to see that they can be used as the substrates for energy-trapped devices. The specimens of which Poisson ratio was more than 3/1 had the $\alpha$ range 0.3~0.75, and piezoelectric properties were degraded in the range $\alpha$$\geq$0.75, and temperature stability was good in the $\alpha$ range 0.5~0.75. Accordingly, the optimal point of $Cr_2O_3$ additive weight is sure to be in the vicinity of 0.5[wt%].