• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.026 seconds

The Strength Characteristics By Freezing and Thawing of Controlled Low Strength Material Using Coal Ash (석탄회를 활용한 CLSM의 동결융해에 의한 강도 특성)

  • Hyun, Ho-Gyu;Kim, Sun-Tae;Jung, Hyuk-Sang;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.32-37
    • /
    • 2010
  • Recently, the land area for many people has been limited because of industrialization and modernization in Korea. The large-scale constructions like the reclamation development projects have been progressed to resolve this problem mentioned above. Therefore, as many of the usefulconstruction materials as possible are needed to perform the large-scale construction projects. Many studies for the utilization of pond ash which has a similar characteristic of sand have been conducted and there has been often occurred many structural problems on roadbed in winter. Therefore, the characteristics of the freezing and thawing for Controlled Low-Strength Material (CLSM) using pond ash were analyzed and evaluated by unconfined compressive strength test in this study. As a result of this study, it was confirmed that new CLSM using pond ash with cement (8.2% by weight)was able to stand for the freezing and thawing behavior.

  • PDF

Analysis of the Demage of Structures by Dynamic Compaction (동다짐에 의한 인접구조물 피해 분석)

  • Song, Jeong-Rak;Han, Wan-Gyun;Sin, Seung-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.06a
    • /
    • pp.55-72
    • /
    • 1993
  • Dynamic compaction may cause some demages to structures becasue it uses the impact energy of heavy weight with high drop height. This study measured and analyzed the vibrations at the (bnamic compaction site which was composed of man-made land fill. From the vibration analysis, it was found that the particle velocity and attenuation was greatest in longitudinal direction and smallest in transversal direction, the dominant frequency ranged from 7 Hz to 9 Hz and the structural damage could be prevented by reducing the drop height at the vicinity of the vibration sentialive structures. Also, the damage to the office equipment could be prevented by doing the dynamic compaction work curing closed-office hours.

  • PDF

A Study on Multi-Objective Fuzzy Optimum Design of Truss Structures

  • Mu, Zai-Gen;Ge, Xin;Yan, Mou;Chen, Yun-Zhou
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.2 s.8
    • /
    • pp.77-83
    • /
    • 2003
  • This paper presents decision making method of structural multi-objective fuzzy optimum problem. The data and behavior of many engineering systems are not know precisely and the designer is required to design the system in the presence of fuzziness in the multi-goals, constraints and consequences of possible actions. In this paper, in order to find a satisfactory solution, the membership functions are constructed for the fuzzy objectives subject to the fuzzy constraints, and two approaches are presented by using the different types of fuzzy decision making. Thus, multi-objective fuzzy optimum problem can be converted into single objective non-fuzzy optimum problem and satisfactory solution of the multi-objective fuzzy optimum problem can be found with general optimum programming. Illustrative numerical example of the ten bar truss for minimum weight and minimum deflection is provided to demonstrate the process of finding the solution and the results are discussed.

  • PDF

A Study on Optimum design of Corrugated web girder using Eurocode (유로코드를 이용한 주름웨브보의 최적설계 연구)

  • Shon, Su-Deok;Yoo, Mi-Na;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.47-56
    • /
    • 2012
  • This paper describes the structural design and optimization of sinusoidally corrugated web girder by using EUROCODE (EN 1993-1-5). The optimum design methodology and characteristics of the optimal cross-section are discussed. We investigate a shear buckling and the concerned standards for corrugated web and explain the equations to obtain a critical stress according to buckling type. In order to perform optimization, we consider an objective function as minimum weight of the girder and use the constraint functions as slenderness ratio and stresses of flanges as well as corrugated web and deflection. Genetic Algorithm is adopted to search a global optimum solution for this mathematical model. For numerical example, the clamped girder under the concentrated load is considered, while the optimum cross-sectional area and design variables are analyzed. From the results of the adopted example, the optimum design program of the sinusoidally corrugated web girder is able to find the suitable solution which satisfied a condition subject to constraint functions. The optimum design shows the tendency to decrease the cross-sectional area with the yielding strength increase and increase the areas with load increase. Moreover, the corrugated web thickness shows a stable increase concerning the load.

Structural Design of Ultra High-Strength Concrete Non-Uniform Truss Using Strut-Tie Approach (스트럿-타이 기법에 의한 초고강도 콘크리트 비정형 트러스 구조 디자인)

  • Kim, Hoyeon;Cho, Chang-Geun;Yang, Hea-Joo;Kim, Min-Ji;Chea, Youn-Ha;Choi, Jong-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.69-78
    • /
    • 2018
  • In current research, it was attempted a preliminary design and evaluation of non-uniform ultra high-strength concrete (UHSC) truss members. UHSC used here has the compressive strength of 180 MPa, the tensile strength of 8 to 20 MPa, and the tensile strain after cracks up to 2%. By the three-dimensional finite element stress analysis as well as strut-tie approach on concrete solid beams, the non-uniform truss shape of UHSC truss was designed with the architectural esthetic concept. In a series of examples, to compare with conventional concrete members, the proposed UHSC truss members have advantages in capabilities of the slender design with minimum weight with high performances under transverse loadings as well as the aesthetically non-uniform design for spatial structures.

A Study on the Reappraisal of Gerrit Thomas Rietveld's Design Concept (게리트 리트벨트 디자인 개념 재평가에 관한 연구)

  • Lee, Kwang-In
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.4
    • /
    • pp.97-105
    • /
    • 2012
  • This study aims to evaluate Rietveld's creative design style and concepts. To this end, I looked into the evaluation of major researchers on Rietveld, classified all his works into four groups according to the design types and analyzed them. As follows: based on the results of the analysis of works I concluded. First, Rietveld created the concept of the spatial extension to the ingenious joint which had the structural node formed of three listels with quadrangular section. It is the design innovation that led to liberate the closed construction. Second, Rietveld had opened up the possibility to neutralize the gravitational three-dimensional works. He subtracted the weight in the direction of gravity from the three-dimensional structure of the works and painted the three primary colors on them partially to get rid of the original material color. Therefore they looked like the forms liberated from gravity. Third, Rietveld ripped off the surfaces of cube through several formative experiments and decomposed the volume into the tesseract. Through this method of realizing the new plastic concepts, he completed the architectural models of weightlessness. Fourth, Rietveld opened the possibility of the realization of the three-dimensional works integrated all space and time in the one-pieced works and the folded works. Fifth, Rietveld steadily experimented and realized the internal and external integration of time and space in his later works.

Effect of position of hexagonal opening in concrete encased steel castellated beams under flexural loading

  • Velrajkumar, G.;Muthuraj, M.P.
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.95-106
    • /
    • 2020
  • Castellated beams fabricated from standard I-sections are being used for several structural applications such as commercial and industrial buildings, multistory buildings, warehouses and portal frames in view of numerous advantages. The advantages include enhanced moment of inertia, stiffness, flexural resistance, reduction in weight of structure, by passing the used plate girders, the passage of service through the web openings etc. In the present study, experimental and numerical investigations were carried out on concrete encased steel castellated beams with hexagonal openings under flexural loading. Various positions of openings such as along the neutral axis, above the neutral axis and below the neutral axis were considered for the study. From the experimental findings, it has been observed that the load-carrying capacity of the castellated beam with web opening above neutral axis is found to be higher compared to other configurations. Nonlinear finite element analysis was performed by using general purpose finite element software ABAQUS considering the material nonlinearities. Concrete damage plasticity model was employed to model the nonlinearity of concrete and elasto-plastic model for steel. It has been observed that FE model could able to capture the behaviour of concrete encased steel castellated beams and the predicted values are in good agreement with the corresponding experimental values.

Electromagnetic Structural Design Analysis and Performance Improvement of AFPM Generator for Small Wind Turbine

  • Jung, Tae-Uk;Cho, Jun-Seok
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.374-378
    • /
    • 2011
  • Axial Field Permanent Magnet (AFPM) generators are widely applied for the small wind turbine because of the higher power density per unit weight than that of the conventional radial field generator. It is caused by the disc shaped rotor and the stator structures. The generally used AFPM generator, AFER-NS generator, is composed of the two side's external rotors and non-slotted stator without stator core. However, the output voltage and the output power are limited by the large reluctance by the long air-gap flux paths. In this paper, the design study of AFIR-S generator having double side's slotted stator core is accomplished to improve the output generation characteristics. The electromagnetic design analysis and the design improvement of the suggested AFIR-S generator are studied. Firstly, the electromagnetic design analysis was done to increase the power density. Secondly, the design optimizations of the rotor pole-arc ratio of permanent magnet are accomplished to increase the output power and to reduce the cogging torque. Finally, the output performances of AFER-NS and AFIR-S generator are compared with each other. For this study, 3D FEA is applied for the design analysis because of three dimensional electromagnetic structures.

Dynamic elastic local buckling of piles under impact loads

  • Yang, J.;Ye, J.Q.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.543-556
    • /
    • 2002
  • A dynamic elastic local buckling analysis is presented for a pile subjected to an axial impact load. The pile is assumed to be geometrically perfect. The interactions between the pile and the surrounding soil are taken into account. The interactions include the normal pressure and skin friction on the surface of the pile due to the resistance of the soil. The analysis also includes the influence of the propagation of stress waves through the length of the pile to the distance at which buckling is initiated and the mass of the pile. A perturbation technique is used to determine the critical buckling length and the associated critical time. As a special case, the explicit expression for the buckling length of a pile is obtained without considering soil resistance and compared with the one obtained for a column by means of an alternative method. Numerical results obtained show good agreement with the experimental results. The effects of the normal pressure and the skin friction due to the surrounding soil, self-weight, stiffness and geometric dimension of the cross section on the critical buckling length are discussed. The sudden change of buckling modes is further considered to show the 'snap-through' phenomenon occurring as a result of stress wave propagation.

Behaviors of box-shape steel reinforced concrete composite beam

  • Yang, Chun;Cai, Jian;Wu, Yi;He, Jiangang;Chen, Haifeng
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.419-432
    • /
    • 2006
  • Experimental studies on the behaviors of box-shape steel reinforced concrete (SRC) composite beams were conducted. Seven 1:3 scale model composite beams were tested to failure. Each of the beams was simply supported at the ends and two concentrated loads were applied at the one-third span and two-thirds span respectively. Experimental results indicate that the flexural strength can be enhanced when the ratio of flexural reinforcements and flange thickness of the shape steel are increased; the shear strength is enhanced with increase of web thickness of the shape steel. Insignificant effects of concrete in the box-shape steel are found on improving the flexural strength and shear strength of the box-shape SRC composite beams, thus concrete inside the box-shape steel can be saved, and the weight of the SRC beams can be decreased. Shear studs can strengthen the connection and co-work effects between the shape steel and the concrete and enhance the shear strength, but stud design for the composite beams should be further improved. Formulas for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box-shape SRC composite beam is a kind of ductile member, and suitable for extensive engineering application.