• Title/Summary/Keyword: Structural Vibration and Noise

Search Result 1,258, Processing Time 0.026 seconds

Transverse vibration reduction at navigation bridge deck of the shuttle tanker using structural intensity analysis (진동 인텐시티 해석을 통한 원유운반선의 거주구 횡방향 진동 저감 연구)

  • Kim, Ki-Sun;Kim, Heui-Won;Joo, Won-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.251-255
    • /
    • 2012
  • Structural intensity has been mainly utilized to identify vibration energy flow in a vessel. In this paper, the structural intensity of a shuttle tanker subjected to H-moment of the main engine was calculated using a finite element model. From the analysis, it was found that the top-bracing elements, which support the main engine onto the hull structure to prevent the excessive transverse vibration of the main engine, play the role of the dominant path and sink for vibration energy flow from the main engine. Therefore, the structural intensity was controlled by the modification of stiffness and damping characteristics of the top-bracing elements. As a result, it is observed that the transverse vibration level at the center of navigation bridge deck decreased after the control of structural intensity.

  • PDF

Evaluation of Diesel Engine Structural Vibration Using Phase Vector Sum (Phase vector sum을 이용한 디젤엔진 구조진동의 평가)

  • 이수목;김관영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.383-388
    • /
    • 2003
  • As an effective way of response evaluation in structural vibration analysis, the phase vector sum(PVS) method used in shaft torsional vibration analysis is introduced. Basic relation of PVS applicable to structural problem is derived and applied to Diesel engine structures. Concepts of forced phase vector sum (FPVS) and significance level (SL) are proposed to visualize the correlation between excitation orders and vibration modes in the SL map. The maximum responses and SL are compared and reviewed to confirm the validity of the method. It is regarded FPVS is adequate to newly evaluate the structural vibration based on excitation information.

  • PDF

Design of railway noise and vibration Database considering noise source of railway noise complaints focused area (철도 소음 민원 집중 지역의 소음 발생원을 고려한 철도 소음진동 데이터베이스 설계)

  • Lee, Hong-gi;Lee, Hyun-jun;Son, Sung-wan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.812-816
    • /
    • 2014
  • Recently, there is an increasing interest on railway noise and vibration. Accordingly, the importance of technology that can assess the vibration and structural noise caused due to the railway operation is increasing. Additionally, the need to construct a railway noise and vibration database which is a basic data for a reliable railway noise and vibration assessment as well is increasing. However, the problem is that the currently constructed database fails to include the factors influencing the occurrence of noise and vibration sufficiently. Therefore, In this paper, design a railway noise and vibration database that includes those factors sufficiently and which enables the continuous data management and accumulation.

  • PDF

Validation of Vibration and Stress Analysis Methodology for APR1400 Reactor Vessel Internals Comprehensive Vibration Assessment Program (APR1400 원자로내부구조물 종합진동평가프로그램 진동 및 응력해석 방법론 검증)

  • Kim, Kyu Hyung;Ko, Do Young;Kim, Sung Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.300-305
    • /
    • 2012
  • The vibration and stress analysis program of comprehensive vibration assessment program (CVAP) is to verify theoretically the structural integrity of reactor vessel internals (RVI) and to provide the basis for selecting the locations monitored in measurement and inspection programs. This paper covers the verification of the vibration and stress analysis methodology of APR1400 RVI CVAP. The analysis methodology was developed to use 3-dimensional hydraulic and structural models with ANSYS and CFX. To validate the methodology, the hydraulic loads and structural reponses of OPR1000 were predicted and compared with the calculated and measured data in the OPR1000 RVI CVAP. Since the results predicted with this methodology were close to the measured values considerably, it was confirmed that the analysis methodology was developed properly.

  • PDF

Heavy-weight floor impact noise propagation in a multi-story building (다층 공동주택의 중량충격원 전파 특성 해석)

  • Lee, Sinyeob;Hwang, Dukyoung;Park, Junhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.225-226
    • /
    • 2014
  • In multi-story buildings, heavy-weight floor impact noise propagates through multiple layers. In order to evaluate the influence of structural vibration and propagation, the actual twelve-story building was excited by an impact ball. Sound and vibration responses of each floor was measured using accelerometers and a microphone. Vibration characteristics and its transfer paths were different depending on the excitation floor locations due to differences in the structural characteristics. From the measurement result, transfer characteristics were quantified by statistical energy analysis. It was confirmed that the heavy-weight floor impact noise influence not only adjacent floor. The impact noise transferred and affected multiple layers.

  • PDF

Estimation of Vibration Source and Sound Radiation of a Refrigerator Fan by using Measured Acceleration Signals (가속도 측정신호를 이용한 냉장고 홴의 진동원과 방사소음의 예측)

  • Jung, Byung-Kyoo;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.834-841
    • /
    • 2011
  • Obtaining the real exciting force is important for the analysis of structural vibration or sound radiation to represent the actual condition. But in most cases, it is so difficult to get the actual force signals by direct measurement using sensors due to complex geometry. This paper suggests advanced source identification method which can be applied to the prediction of radiated noise considering correlations between measured signals. This method was implemented to the identification of the fan force in the refrigerator. The analysis of structural vibration and radiated noise caused by the fan force was also performed. The comparison between predicted SPL and measured SPL of the radiated noise by the refrigerator fan showed good agreement.

Structural Vibration Control for Broadband Noise Attenuation in Enclosures

  • Krishnaswamy Kailash;Rajamani Rajesh;Woo Jong Jin;Cho Young Man
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1414-1423
    • /
    • 2005
  • This paper develops and evaluates several strategies for structural vibration control with the objective of attenuating broadband noise inside a rectangular enclosure. The strategies evaluated include model-independent collocated control, model-based feedback control and a new 'modal-estimate' feedback strategy. Collocated control requires no knowledge of model parameters and enjoys the advantage of robustness. However, effective broadband noise attenuation with colocated control requires a large number of sensor-actuator pairs. Model-based con-trollers, on the other hand, can be theoretically effective even with the use of a single actuator. However, they suffer from a lack of robustness and are unsuitable from a practical point of view for broadband structural vibration applications where the dynamic models are of large order and poorly known. A new control strategy is developed based on attenuating a few structural vibration modes that have the best coupling with the enclosure acoustics. Broadband attenuation of these important modes can be achieved using a single actuator, a limited number of accelerometers and limited knowledge of a few modal functions. Simulation results are presented to demonstrate the effectiveness of the developed strategy.

Evaluating the Vibrational Characteristics of Floor Impact Noise in Different Structural Elements of an Apartment House (바닥충격에 의한 공동주택의 바닥, 벽, 천장의 진동 및 소음방사특성 연구)

  • Lee, Byung-Kwon;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.351.2-351
    • /
    • 2002
  • The overall noise reduction was compared in regard to the vibrational characteristics of floor impact noise in a multi story residential building which has several noise reduction treatments. The vibration through its structural elements such as wall, floor and ceiling and sound emitting were investigated for each insulation treatment. It was found that, in case of heavy-weight impact noise, the vibration energy is emitted mostly from ceiling, but for the light-weight impact noise, most of the energy comes through ceiling and walls. (omitted)

  • PDF

Identification of the Interior noise Generated by Car Axle and Modification of the Structural on Axle System for Noise Reduction (SUV 용 액슬의 소음원 규명 및 소음 저감을 위한 액슬의 구조변경에 관한 연구)

  • Lee, Ju-Young;Lee, Sang-Kwon;Jo, Yoon-Kyeong;Kim, Jong-Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.180-185
    • /
    • 2005
  • Gear whine noise of the axle and transmission is getting more important for reduction of vehicle noise, because major noise of vehicle was reduced. Therefore, in this paper, axle noise and vibration is measured, then the modal analysis and running modal analysis is applied for identification of axle gear whine noise. And To reduce axle noise, Various structural modifications are performed by using FEM and BEM techniques.

  • PDF