• Title/Summary/Keyword: Structural Static Test

검색결과 625건 처리시간 0.024초

Aerodynamic effect of wind barriers and running safety of trains on high-speed railway bridges under cross winds

  • Guo, Weiwei;Xia, He;Karoumi, Raid;Zhang, Tian;Li, Xiaozhen
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.213-236
    • /
    • 2015
  • For high-speed railways (HSR) in wind prone regions, wind barriers are often installed on bridges to ensure the running safety of trains. This paper analyzes the effect of wind barriers on the running safety of a high-speed train to cross winds when it passes on a bridge. Two simply-supported (S-S) PC bridges in China, one with 32 m box beams and the other with 16 m trough beams, are selected to perform the dynamic analyses. The bridges are modeled by 3-D finite elements and each vehicle in a train by a multi-rigid-body system connected with suspension springs and dashpots. The wind excitations on the train vehicles and the bridges are numerically simulated, using the static tri-component coefficients obtained from a wind tunnel test, taking into account the effects of wind barriers, train speed and the spatial correlation with wind forces on the deck. The whole histories of a train passing over the two bridges under strong cross winds are simulated and compared, considering variations of wind velocities, train speeds and without or with wind barriers. The threshold curves of wind velocity for train running safety on the two bridges are compared, from which the windbreak effect of the wind barrier are evaluated, based on which a beam structure with better performance is recommended.

10 MW급 복합재 풍력 블레이드의 굽힘-비틀림 커플링 거동 연구 (Bend-Twist Coupling Behavior of 10 MW Composite Wind Blade)

  • 김수현;신형기;방형준
    • Composites Research
    • /
    • 제29권6호
    • /
    • pp.369-374
    • /
    • 2016
  • 본 연구에서는 굽힘-비틀림 커플링(bend-twist coupled, BTC) 설계개념을 적용한 10 MW급 복합재 풍력 블레이드의 구조 최적 설계를 수행하였다. BTC 설계개념은 동적 하중 상황에서 블레이드의 굽힘과 비틀림 거동 사이의 연동을 유도하여, 단면 받음각 변화에 의한 수동적인 적응 하중저감이 가능하다. 인자연구를 통해 최적의 BTC 설계인자를 추출하여 블레이드 구조설계에 적용하였다. BTC 개념이 동적 하중 감소에 미치는 영향을 가늠하기 위해 블레이드 루트 부에서의 피로등가하중을 계산한 결과, BTC 개념이 적용된 블레이드를 적용한 경우 피로등가하중이 2-3% 정도 감소하는 것을 확인할 수 있었다. BTC 효과를 시험적으로 검증하기 위해 1:29 비율의 블레이드 stiffener 축소모델을 제작하였으며, 정하중 시험을 통해 처짐 거동 시 끝단에서의 비틀림을 측정하였다.

Experimental study on hysteretic behavior of steel moment frame equipped with elliptical brace

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.891-907
    • /
    • 2020
  • Many studies reveal that during destructive earthquakes, most of the structures enter the inelastic phase. The amount of hysteretic energy in a structure is considered as an important criterion in structure design and an important indicator for the degree of its damage or vulnerability. The hysteretic energy value wasted after the structure yields is the most important component of the energy equation that affects the structures system damage thereof. Controlling this value of energy leads to controlling the structure behavior. Here, for the first time, the hysteretic behavior and energy dissipation capacity are assessed at presence of elliptical braced resisting frames (ELBRFs), through an experimental study and numerical analysis of FEM. The ELBRFs are of lateral load systems, when located in the middle bay of the frame and connected properly to the beams and columns, in addition to improving the structural behavior, do not have the problem of architectural space in the bracing systems. The energy dissipation capacity is assessed in four frames of small single-story single-bay ELBRFs at ½ scale with different accessories, and compared with SMRF and X-bracing systems. The frames are analyzed through a nonlinear FEM and a quasi-static cyclic loading. The performance features here consist of hysteresis behavior, plasticity factor, energy dissipation, resistance and stiffness variation, shear strength and Von-Mises stress distribution. The test results indicate that the good behavior of the elliptical bracing resisting frame improves strength, stiffness, ductility and dissipated energy capacity in a significant manner.

ESPI System을 이용하여 측정한 국부 변형률이 저사이클 피로수명에 미치는 영향에 관한 연구 (Effect of Local Strain on Low Cycle Fatigue using ESPI System)

  • 김경수;김기성;권정민;박성모;김범일
    • 대한조선학회논문집
    • /
    • 제43권2호
    • /
    • pp.213-219
    • /
    • 2006
  • Low cycle fatigue cracks are mainly detected at discontinuous welded locations with high stresses under repeated cyclic static loads due to cargo leading and unloading. Theoretical and analytical methods have been used for evaluation of local stress and strain which have an effect on a prediction of fatigue life, but those have difficulties of considering stress concentration at notched location and complicated material behavior of welded joint or heat affected zone. Electronic speckle pattern interferometry(ESPI) system is nondestructive and non-contact measurement system which can get the relatively accurate full field strain at critical positions such as welded zone and structural discontinuous location. In this study, local strain was measured on welded cruciform joint by ESPI system and then low cycle fatigue test was performed. Effect of local strain on low cycle fatigue life was examined by measured values using ESPI system. Moreover, experimental fatigue life was compared with established S-N curves using theoretical local strain and stress calculated by Neuber's rule.

숭례문 사례를 통한 육축 문화재의 구조특성 연구 (A Study on Structural Characteristics of Stone Masonry Wall Structure)

  • 이성민;이기학;최희수;박주경;최취경
    • 한국공간구조학회논문집
    • /
    • 제11권4호
    • /
    • pp.61-69
    • /
    • 2011
  • 우리나라의 석조문화재을 모델링할 때 불연속면을 갖는 구조재의 강성을 어떻게 규명하느냐가 매우 중요하지만 원형보존을 해야 하는 문화재의 특성상 이를 파악하기란 매우 곤란하다. 이를 위해 본 연구에서는 비파괴조사를 이용하여 고유진동수를 측정한 후, 시행착오법을 이용하여 측정된 고유진동수와 컴퓨터 모델링 해석을 통해 고유진동수를 비교함으로써 불연속면의 강성, 구조재의 탄성계수 등 숭례문 육축 구조를 이루는 재료의 구조적 물성을 추정하였다. 이를 통해 육축 문화재에 대한 컴퓨터 모델링 기법을 제시하고 육축구조물의 안전성에 영향을 미치는 요인을 분석하였다. 연구결과 적심석의 강성이 육축구조물의 안전성에 가장 큰 영향을 미지는 젓으로 분석되었다.

System seismic performance of haunch repaired steel MRFs : dual panel zone modeling and a case study

  • Lee, Cheol-Ho
    • Structural Engineering and Mechanics
    • /
    • 제6권2호
    • /
    • pp.125-141
    • /
    • 1998
  • Recent test results of steel moment connections repaired with a haunch on the bottom side of the beam have been shown to be a very promising solution to enhancing the seismic performance of steel moment-resisting frames. Yet, little is known about the effects of using such a repair scheme on the global seismic response of structures. When haunches are incorporated in a steel moment frame, the response prediction is complicated by the presence of "dual" panel zones. To investigate the effects of a repair on seismic performance, a case study was conducted for a 13-story steel frame damaged during the 1994 Northridge earthquake. It was assumed that only those locations with reported damage would be repaired with haunches. A new analytical modeling technique for the dual panel zone developed by the author was incorporated in the analysis. Modeling the dual panel zone was among the most significant consideration in the analyses. Both the inelastic static and dynamic analyses did not indicate detrimental side effects resulting from the repair. As a result of the increased strength in dual panel zones, yielding in these locations were eliminated and larger plastic rotation demand occurred in the beams next to the shallow end of the haunches. Nevertheless, the beam plastic rotation demand produced by the Sylmar record of 1994 Northridge earthquake was still limited to 0.017 radians. The repair resulted in a minor increase in earthquake energy input. In the original structure, the panel zones should dissipate about 80% (for the Oxnard record) and 70% (for the Sylmar record) of the absorbed energy, assuming no brittle failure of moment connections. After repair, the energy dissipated in the panel zones and beams were about equal.

Seismic behavior of reinforced concrete T-shaped columns under compression-bending-shear and torsion

  • Ping, Chen Zong;Weiwei, Su;Yang, Yang
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.431-444
    • /
    • 2021
  • T-shaped column is usually used as side column in buildings, which is one of the weak members in structural system. This paper presented a quasi-static cyclic loading experiment of six specimens of reinforced concrete (RC) T-shaped columns under compression-flexure-shear-torsion combined loadings to investigate the effect in the ratio of torsion to moment (T/M) and axial compression ratio (n) and height-thickness ratio of flange plate (φ) on their seismic performance. Based on the test results, the failure characteristics, hysteretic curves, ductility, energy dissipation, stiffness degradation and strength degradation were analyzed. The results show that the failure characteristics of RC T-shaped columns mainly depend on the ratio of torsion to moment, which can be divided into bending failure, bending-torsion failure and shear-torsion failure. With the increase of T/M ratio, the torsion ductility coefficient increased, and in a suitable range, the torsion and horizontal displacement ductility coefficient of RC T-shaped columns could be effectively improved with the increase of axial compression ratio and the decrease of height-thickness ratio of flange plate. Besides, the energy dissipation capacity of the specimens mainly depended on the bending and shear energy dissipation capacity. On the other hand, the increase of axial compression ratio and the ratio of torsion to moment could accelerate the torsional and bending stiffness degradation of RC T-shaped columns. Moreover, the degradation coefficient of torsion strength was between 0.80 and 0.98, and that of bending strength was between 0.75 and 1.00.

Mechanical performance of sand-lightweight concrete-filled steel tube stub column under axial compression

  • Zhang, Xianggang;Deng, Dapeng;Lin, Xinyan;Yang, Jianhui;Fu, Lei
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.627-635
    • /
    • 2019
  • In order to study the axial compression performance of sand-lightweight concrete-filled steel tube (SLCFST) stub columns, three circular SLCFST (C-SLCFST) stub column specimens and three SLCFST square (S-SLCFST) stub column specimens were fabricated and static monotonic axial compression performance testing was carried out, using the volume ratio between river sand and ceramic sand in sand-lightweight concrete (SLC) as a varying parameter. The stress process and failure mode of the specimens were observed, stress-strain curves were obtained and analysed for the specimens, and the ultimate bearing capacity of SLCFST stub column specimens was calculated based on unified strength theory, limit equilibrium theory and superposition theory. The results show that the outer steel tubes of SLCFST stub columns buckled outward, core SLC was crushed, and the damage to the upper parts of the S-SLCFST stub columns was more serious than for C-SLCFST stub columns. Three stages can be identified in the stress-strain curves of SLCFST stub columns: an elastic stage, an elastic-plastic stage and a plastic stage. It is suggested that AIJ-1997, CECS 159:2004 or AIJ-1997, based on superposition theory, can be used to design the ultimate bearing capacity under axial compression for C-SLCFST and S-SLCFST stub columns; for varying replacement ratios of natural river sand, the calculated stress-strain curves for SLCFST stub columns under axial compression show good fitting to the test measure curves.

Experimental study of buckling-restrained brace with longitudinally profiled steel core

  • Lu, Junkai;Ding, Yong;Wu, Bin;Li, Yingying;Zhang, Jiaxin
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.715-728
    • /
    • 2022
  • A new type of buckling-restrained braces (BRBs) with a longitudinally profiled steel plate working as the core (LPBRB) is proposed and experimentally investigated. Different from conventional BRBs with a constant thickness core, both stiffness and strength of the longitudinally profiled steel core along its longitudinal direction can change through itself variable thickness, thus the construction of LPBRB saves material and reduces the processing cost. Four full-scale component tests were conducted under quasi-static cyclic loading to evaluate the seismic performance of LPBRB. Three stiffening methods were used to improve the fatigue performance of LPBRBs, which were bolt-assembled T-shaped stiffening ribs, partly-welded stiffening ribs and stiffening segment without rib. The experimental results showed LPBRB specimens displayed stable hysteretic behavior and satisfactory seismic property. There was no instability or rupture until the axial ductility ratio achieved 11.0. Failure modes included the out-of-plane buckling of the stiffening part outside the restraining member and core plate fatigue fracture around the longitudinally profiled segment. The effect of the stiffening methods on the fatigue performance is discussed. The critical buckling load of longitudinally profiled segment is derived using Euler theory. The local bulging behavior of the outer steel tube is analyzed with an equivalent beam model. The design recommendations for LPBRB are presented finally.

Collapse-resistant performance of a single-story frame assembly and multi-story sub-frame under an internal column-removal scenario

  • Zhong, Wei-hui;Tan, Zheng;Tian, Li-min;Meng, Bao;Zheng, Yu-hui;Daun, Shi-chao
    • Steel and Composite Structures
    • /
    • 제41권5호
    • /
    • pp.663-679
    • /
    • 2021
  • To elucidate the differences in the collapse behavior between a single-story beam-column assembly and multi-story frame, two 1/3-scale two-bay composite frames, including a single-story composite beam-column assembly and a three-story composite sub-frame, were designed and quasi-statically tested. The load-displacement responses, failure modes, and internal force development of the two frames were analyzed and compared in detail. Furthermore, the resistance mechanisms of the two specimens were explored, and the respective contributions of different load-resisting mechanisms to the total resistances were quantitatively separated to gain deeper insights. The experimental tests indicated that Vierendeel action was present in the two-dimensional multi-story frames, which led to an uneven internal force distribution among the three stories. The collapse resistance of TSDWA-3S in the flexural stage was not significantly increased by the structural redundancy provided by the additional story, as compared to that of TSDWA-1S. Although the development of the load response was similar in the two specimens at flexural stage, the collapse mechanisms of the multi-story composite frame were much more complicated than those of the single-story beam-column assembly, and the combined action between stories was critical in determining the internal force redistribution and rebalancing of the remaining structure.