• Title/Summary/Keyword: Structural Static Test

Search Result 624, Processing Time 0.028 seconds

Evaluation of Static Structural Integrity for Composites Wing Structure by Acoustic Emission Technique (음향방출법을 응용한 복합재 날개 구조물의 정적구조 건전성 평가)

  • Jun, Joon-Tak;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.780-788
    • /
    • 2009
  • AE technique was applied to the static structural test of the composite wing structure to evaluate the structural integrity and damage. During the test, strain and displacements measurement technique were used to figure out for static structural strength. AE parameter analysis and source location technique were used to evaluate the internal damage and find out damage source location. Design limit load test, the 1st and 2nd design ultimate load tests and fracture test were performed. Main AE source was detected by an sensor attached on skin near by front lug. Especially, at the 1st design ultimate test, strain and displacements results didn't show internal damage but AE signal presented a phenomenon that the internal damage was formed. At the fracture test, AE activities were very lively, and strain and displacements results showed a tendency that the load path was changed by severe damage. The internal damage initiation load and location were accurately evaluated during the static structural test using AE technique. It is certified from this paper that AE technique is useful technique for evaluation of internal damage at static structural strength test.

Structural identification and seismic performance of brick chimneys, Tokoname, Japan

  • Aoki, T.;Sabia, D.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.553-570
    • /
    • 2005
  • Dynamic and static analyses of existing structures are very important to obtain reliable information relating to actual structural properties. For this purpose a series of material test, dynamic test and static collapse test of the existing two brick chimneys, in Tokoname, are carried out. From the material tests, Young's modulus and compressive strength of the brick used for these chimneys are estimated to be 3200 MPa and 7.5 MPa, respectively. The results of static collapse test of the existing two brick chimneys are discussed in this paper and composed with the results from FEA (Finite Element analysis). From the results of dynamic tests, the fundamental frequencies of Howa and Iwata brick chimneys are estimated to be about 2.69 Hz and 2.93 Hz, respectively. Their natural modes are identified by ARMAV (Autoregressive Moving Average Vectors) model. On the basis of the static and dynamic experimental tests, a numerical model has been prepared. According to the European code (Eurocode n. 8: "Design of structures for earthquake resistance") non-linear static (Pushover) analysis of the two chimneys is carried out and they seem to be vulnerable to earthquakes with 0.25 to 0.35 g.

Development of Full-Scale Static Test System for Aircraft Sensor Pod (항공용 센서 포드의 정적 구조시험장비 개발)

  • Jae Myung Cho;Hoon Hyuk Park;Won Woong Lee;Jong In Bae;Han Sol Lee;Eui Hwan Oh
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.97-105
    • /
    • 2023
  • For aviation sensor pod, structural integrity should be verified through static structural tests for flight loads induced in various maneuvering conditions of the aircraft. For this, it is necessary to develop a test system for full-scale static load test of sensor pod. Based on test requirements, this paper introduced a test system configuration of the static test and the development of test structure frame, restraints equipment, loading equipment, control, and measurement equipment. In addition, methods and procedures for verifying the developed test system were explained. In conclusion, the static load test and data acquisition were successfully performed. Reliability of the test equipment was also verified in the process.

Performance Evaluation on Static Loading and Cyclic Loading for Structural Insulated Panels (구조용단열패널의 정적가력과 반복가력 성능 평가)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 2013
  • Structural insulated panels, structurally performed panels consisting of a plastic insulation bonded between two structural panel facings, are one of emerging products with a viewpoint of its energy and construction efficiencies. These components are applicable to fabricated wood structures. In Korea, there are few technical documents regulated structural performance and engineering criteria in domestic market. This study was conducted to identify fundamental performance of both monotonic load and quasi static cyclic load for SIPs in shear wall application. Static test results showed that maximum load was 44.3kN, allowable shear load was 6.1kN/m, shear stiffness was 1.23 M N/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens : single panel and double panels. Cyclic test results, which were equivalent to static test results, showed that maximum load was 45.42kN, allowable shear load was 6.3kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. From performance of structural tests, it was recommended that the allowable shear load for panels was at least 6.1kN/m.

An Evaluation of Structural Test and Analysis for Composites Vehicle Structures of Automatic Guideway Transit (자동무인경전철 복합재 차체 구조물의 구조 시험 및 해석적 평가)

  • Ko, Hee-Young;Shin, Kwang-Bok;Cho, Se-Hyun;Kim, Dae-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1103-1108
    • /
    • 2009
  • This paper describes the results of structural test and finite element analysis for rubber wheel-type Automatic Guideway Transit(AGT) made of aluminum honeycomb sandwich composites with WR580/NF4000 glass-fabric epoxy laminate face sheets. The static tests of vehicle structure were conducted according to JIS E7l05. These static tests have been done under vertical load, compressive load and 3-point support load. The structural integrity of AGT vehicle structure was evaluated by displacement, stress obtained from LVDT and strain gauges, and natural frequency. And finite element analysis using Ansys v11.0 was done to compare with the results of static test. The result showed that the results of structural integrity for static test were in an good agreement with these of finite element analysis.

  • PDF

A Study on the Structural Analysis and Test of the Bogie Frame According to UIC Code (UIC code에 따른 대차 프레임 구조해석 및 시험에 관한 연구)

  • 최중호;송시엽;천홍정;전형용;박형순
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.884-891
    • /
    • 2002
  • This report is the result performed the structural analysis and the static and fatigue load test of bogie frame for the purpose of designing and verifying the bogie frame which satisfy the load condition required in the UIC code. This investigation is proposed the efficient draft of the design to satisfy the load condition required in the UIC code. And It is performed the structural analysis to evaluate the static strength and the fatigue life of the patient material and the welded part. Also, This is proposed the efficient draft of the test to satisfy the method of the static and fatigue test required in the UC code. And it is carried out the static and the fatigue load test to verify it. We can designed the bogie frame in compliance with UIC 515-4 and 615-4 code.

  • PDF

Structural Static Test for Validation of Structural Integrity of Fuel Pylon under Flight Load Conditions (비행하중조건에서 연료 파일런의 구조 건전성 검증을 위한 구조 정적시험)

  • Kim, Hyun-gi;Kim, Sungchan;Choi, Hyun-kyung;Hong, Seung-ho;Kim, Sang-Hyuck
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.97-103
    • /
    • 2022
  • An aircraft component can only be mounted on an aircraft if it has been certified to have a structural robustness under flight load conditions. Among the major components of the aircraft, a pylon is a structure that connects external equipment such as an engine, and external attachments with the main wing of an aircraft and transmits the loads acting on it to the main structure of the aircraft. In civil aircraft, when there is an incident of fire in the engine area, the pylon prevents the fire from spreading to the wings. This study presents the results of structural static tests performed to verify the structural robustness of a fuel pylon used to mount external fuel tank in an aircraft. In the main text, we present the test set-up diagram consisting of test fixture, hydraulic pressure unit, load control system, and data acquisition equipment used in the structure static test of the fuel pylon. In addition, we introduce the software that controls the load actuator, and provide a test profile for each test load condition. As a result of the structural static test, it was found that the load actuator was properly controlled within the allowable error range in each test, and the reliability of the numerical analysis was verified by comparing the numerical analysis results and the strain obtained from the structural test at the main positions of the test specimen. In conclusion, it was proved that the fuel pylon covered in this study has sufficient structural strength for the required load conditions through structural static tests.

The method using dynamic load and static load figures out gust factor of the membrane structure (동적하중과 정적하중을 이용한 막구조의 거스트 계수 산출 방법)

  • Wang, Ben-Gang;Jeong, Jae-Yong;You, Ki-Pyo;Kim, Young-Moon
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.19-24
    • /
    • 2008
  • The thesis is for gust factor needing when calculate the wind resistance design. For the gust factor, to the membrane structural model, carry through the wind tunnel test and the static load test. Therefore, at first through the tensile test of the fabric material, designate the material of the membrane structural model. Then, to saddle, wave, arch and point four kinds of basic shape membrane structural models, carry on the wind tunnel test, determine their dynamic load and distortion on lateral direction. Finally, according to distort situation of the membrane structure in the wind tunnel test, carry on the static load experiment outside of the wind tunnel, calculate static load which corresponding with distort. According to dynamic load and the static load, figure out gust factor of these kinds of basic membrane structure.

  • PDF

On the Bearing-to-Bearing Variability in Experimentally Identified Structural Stiffnesses and Loss Factors of Bump-Type Foil Thrust Bearings under Static Loads (범프 타입 포일 스러스트 베어링의 정하중 구조 강성 및 손실 계수 차이에 관한 실험적 연구)

  • Lee, Sungjin;Ryu, Keun;Jeong, Jinhee;Ryu, Solji
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.332-341
    • /
    • 2020
  • High-speed turbomachinery implements gas foil bearings (GFBs) due to their distinctive advantages, such as high efficiency, lesser part count, and lower weight. This paper provides the test results of the static structural stiffnesses and loss factors of bump-type foil thrust bearings with increasing preload and bearing deflection. The focus of the current work is to experimentally quantify variability in structural stiffnesses and loss factors among the four test thrust bearings with identical design values and material of the bump and top foil geometries using the same (open-source) fabrication method. A simple test setup, using a rigidly mounted non-rotating shaft and thrust disk, measures the bearing bump deflections with increasing static loads on the test bearing. The inner and outer diameters of the test bearings are 41 mm and 81 mm, respectively. The loss factor, best-representing energy dissipation in the test bearings, is estimated from the area inside the local hysteresis loop of the load versus the bearing deflection curve. The measurements show that structural stiffnesses and loss factors of the test bearings significantly rely on applied preloads and bearing deflections. Local structural stiffnesses of the test bearings increase with applied preloads but decrease with bearing deflections. Changes of loss factors are less sensitive to applied preloads and bearing deflections compared to those of structural stiffnesses. Up to 35% variability in static load structural stiffnesses is found between bearings, while up to 30% variability in loss factors is found between bearings.

Study on Evaluation of Structural Integrity for Small Aircraft Tail (소형 항공기 미익부 구조 건전성 평가에 관한 연구)

  • Lee, Muhyoung;Park, Illkyung;Kim, Sungjoon;Ahn, Sukmin
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.28-34
    • /
    • 2012
  • Structural integrity evaluation is important item in the aircraft certification. Recently, it is designed for limit load, material weakness about fatigue and corrosion, damage by bird strike in flight to evaluate structural integrity of aircraft. And static/fatigue analysis are performed to secure structural integrity, it was verified by static and fatigue tests. To evaluate the structural integrity of small aircraft tail, structural integrity was calculated by the finite element analysis. In the present study, finite element analysis are performed to pick out load cases in flight occurrence, and secure margin of safety to evaluate structural integrity of KC-100 tail unit. The proprieties of finite element analysis results are compared with the static structure test results. The estimation process of structural integrity for small aircraft tail may help the design.