• 제목/요약/키워드: Structural Safety Evaluation Criterion

검색결과 17건 처리시간 0.02초

엘리베이터 설치 작업용 시스템 비계의 구조 성능 평가 (Structural Performance Evaluation of System Scaffolding for Elevator Installation Work)

  • 황종문;이기열
    • 한국안전학회지
    • /
    • 제38권3호
    • /
    • pp.61-68
    • /
    • 2023
  • This study performed a structural performance evaluation of a system scaffolding for elevator installation work developed in previous studies. The structural performance was evaluated via a structural test conducted to apply the working load specified in the design standard. The deflection of the horizontal member and the stress of each member constituting the system scaffolding were measured. Consequently, the structural safety evaluation including structural behavior and required performance was performed using the deflection and stresses measured from the structural test. The structural test and safety evaluation results based on the heavy working load corresponding to the design load indicated that the deflection, which is the performance criterion of the horizontal member, did not exceed the allowable value. Further, each member's stress, which is a safety evaluation indicator, did not exceed the allowable strength for both horizontal and vertical members with bending behavior and fordable bracing with tensile behavior, while also satisfying the required safety factor. In addition, the results confirmed the safety against deformation, partial damage, and destruction owing to excessive and maximum load. Therefore, the system scaffolding developed in this study satisfies both the structural performance and safety required by the design standards; thus, it can be applied to elevator installation work sites.

초고온 동압을 받는 제트 베인의 구조 안전성 평가에 대한 연구 (A study on structural safety evaluation of jet vane under very high temperature and dynamic pressure)

  • 박성한;이상연;박종규;김원훈;문순일
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.99-105
    • /
    • 2005
  • 초고온($2700^{\circ}C$) 연소가스에 직접 노출된 상태에서 가스유동에 의한 동압을 받는 추력편향장치용 제트 베인의 열구조 안전성을 평가하기 위하여 내열합금의 초고온 인장시험 및 3차원 비선형 수치해석을 수행하였다. 고온 구조거동을 분석하여 제트 베인의 구조안전성을 평가하였으며 구조해석결과를 지상연소시험결과와 비교하였다. 구조 및 열 하중의 대부분은 제트 베인 축에 집중되었으며, 축은 $1400^{\circ}C$ 이하에서 구조적으로 안전한 것으로 밝혀졌다. 지상연소시험결과와 구조해석결과의 비교를 통하여 베인 하중과 축의 변위를 기준으로 구조안전계수를 평가하는 것이 등가응력에 의한 평가 기준보다 더 유용한 기준으로 판단되었다.

  • PDF

초고온 동압을 밭는 제트 베인의 구조 안전성 평가에 대한 연구 (A Study on Structural Safety Evaluation of let Vane under very High Temperature and Dynamic Pressure)

  • 박성한;이상연;박종규;김원훈;문순일
    • 한국추진공학회지
    • /
    • 제9권3호
    • /
    • pp.18-24
    • /
    • 2005
  • 초고온(2700$^{\circ}C$ ) 연소가스에 직접 노출된 상태에서 가스유동에 의한 동압을 받는 추력편향장치용 제트 베인의 열구조 안전성을 평가하기 위하여 내열합금의 초고온 인장시험 및 3차원 비선형 수치해석을 수행하였다. 고온 구조거동을 분석하여 제트 베인의 구조안전성을 평가하였으며 구조해석결과를 지상 연소시험결과와 비교하였다. 구조 및 열 하중의 대부분은 제트 베인 축에 집중되었으며, 축은 1400$^{\circ}C$ 이하에서 구조적으로 안전한 것으로 밝혀졌다. 지상연소시험결과와 구조해석결과의 비교를 통하여 베인 하중과 축의 변위를 기준으로 구조안전계수를 평가하는 것이 등가응력에 의한 평가기준보다 더 유용한 기준으로 판단되었다.

Performance evaluation of steel and composite bridge safety barriers by vehicle crash simulation

  • Thai, Huu-Tai
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.405-414
    • /
    • 2010
  • The performance of full-scale steel and composite bridge safety barriers under vehicle crash is evaluated by using the nonlinear explicit finite element code LS-DYNA. Two types of vehicles used in this study are passenger car and truck, and the performance criteria considered include structural strength and deformation, occupant protection, and post-crash vehicle behavior. It can be concluded that the composite safety barrier satisfies all performance criteria of vehicle crash. Although the steel safety barrier satisfies the performance criteria of occupant protection and post-crash vehicle behavior, it fails to satisfy the performance criterion of deformation. In all performance evaluations, the composite safety barrier exhibits a superior performance in comparing with the steel safety barrier.

신뢰성에 기초한 강상형 보도육교의 안전도 및 잔존 내하력평가 (Reliability-Based Assessment of Safety and Residual Carrying-Capacity of Steel-Box Pedestrian Bridges)

  • 조효남;최영민;이은철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.202-211
    • /
    • 1996
  • A number of typical type of steel-box pedestrian bridges are constructed in the metropolitan highway or heavy traffic urban area. Although it has the advantage of speedy construction because of its simple structural form and prefabricated erection method, it has been reported that many of these bridges are deteriorated or damaged and thus are in the state such that it would give unsafe and uncomfortable feeling to pedestrians. In the paper, for the realistic assessment of safety and residual earring-capacity of deteriorated and/or damaged steel box pedestrian bridges, an interactive non-linear limit state model are formulated based on the von Mises' combined stress yield criterion. It is demonstrated that the proposal model is effective for the reliability-based safety assessment and residual carrying-capacity evaluation of steel-box pedestrian bridges. In addition, this study suggests an effective and practical field load test method for pedestrian bridges.

  • PDF

Structural Integrity Evaluation of Steam Generator Tube with Two Parallel Axial Through-Wall Cracks

  • Moon Seong In;Kim Young Jin;Lee Jin Ho;Song Myung Ho;Park Youn Won
    • Nuclear Engineering and Technology
    • /
    • 제36권4호
    • /
    • pp.327-337
    • /
    • 2004
  • It is commonly required that tubes with defects exceeding $40\%$ of wall thickness in depth should be plugged; however, this criterion is too conservative for some locations and for some types of defects. Many studies have been done with the aim of developing an alternative plugging criteria, and these studies have shown that steam generator tubes with a certain range of axial through-wall cracks could remain in service without any safety or reliability problems. However, these studies have been limited, thus far, to consideration of single cracked tubes, necessitating a study on multiple cracks, which are commonly found. A crack coalescence model applicable to steam generator tubes with two collinear axial through-wall cracks was proposed in the previous study. In this paper, the investigation is extended to the parallel axial cracks spaced in a circumferential direction, because parallel axial cracks are more frequently detected during in-service inspections than collinear axial cracks. Interaction effects between two parallel cracks are evaluated by performing elastic and elastic-plastic finite element analyses.

Structural design and evaluation of a 3MW class wind turbine blade

  • Kim, Bum-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.154-161
    • /
    • 2014
  • This research presents results of structural designs and evaluations for 3MW Wind Turbine Blade by FEM analysis. After the GFRP model was designed as a baseline model, failure check by Puck's failure criterion and buckling analysis were accomplished to verify safety of wind turbine blade in the critical design load case. Moreover, applicability of two kinds of carbon spar cap model, was studied by comparing total mass, price and tip deflection to the GFRP model. The results showed that the GFRP model had sufficient structural integrity in the critical design load case, and the carbon spar cap model could be a reasonable solution to reduce weights, tip deflections.

지진파 탁월주기를 고려한 비구조요소의 수평설계지진력 평가 (A Study on Evaluation of Horizontal Force of Non-structural Components Considering Predominant Periods of Seismic Waves)

  • 오상훈;김주찬
    • 한국지진공학회논문집
    • /
    • 제24권6호
    • /
    • pp.267-275
    • /
    • 2020
  • In the event of an earthquake, non-structural components require seismic performance to ensure evacuation routes and to protect lives from falling non-structural components. Accordingly, the seismic design code proposes horizontal force for the design and evaluation of non-structural components. Ground motion observed on each floor is affected by a building's eigen vibration mode. Therefore, the earthquake damage of non-structural components is determined by the characteristics of the non-structural component system and the vibration characteristics of the building. Floor response spectra in the seismic design code are estimated through time history analysis using seismic waves. However, it is difficult to use floor response spectra as a design criterion because of user-specific uncertainties of time history analysis. In addition, considering the response characteristics of high-rise buildings to long-period ground motions, the safety factor of the proposed horizontal force may be low. Therefore, this study carried out the horizontal force review proposed in the seismic design code through dynamic analysis and evaluated the floor response of seismic waves considering buildings and predominant periods of seismic waves.

Fluid-elastic Instability Evaluation of Steam Generator Tubes

  • Cho, Young Ki;Park, Jai Hak
    • International Journal of Safety
    • /
    • 제11권1호
    • /
    • pp.1-5
    • /
    • 2012
  • It has been reported that the plugged steam generator tube of Three Mile Island Unit 1 in America was damaged by growing flaw and then this steam generator tube destroyed the nearby steam generator tubes of normal state. On this account, stabilizer installation is necessary to prevent secondary damage of the steam generator tubes. The flow-induced vibration is one of the major causes of the fluid-elastic instability. To guarantee the structural integrity of steam generator tubes, the flow-induced vibration caused by the fluid-elastic instability is necessary to be suppressed. In this paper, the effective velocity and the critical velocity are calculated to evaluate the fluid-elastic instability. In addition, stability ratio value of the steam generator tubes is evaluated in order to propose one criterion when to determine stabilizer installation.

Modeling of Reinforced Concrete for Reactor Cavity Analysis under Energetic Steam Explosion Condition

  • Kim, Seung Hyun;Chang, Yoon-Suk;Cho, Yong-Jin;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.218-227
    • /
    • 2016
  • Background: Steam explosions may occur in nuclear power plants by molten fuel-coolant interactions when the external reactor vessel cooling strategy fails. Since this phenomenon can threaten structural barriers as well as major components, extensive integrity assessment research is necessary to ensure their safety. Method: In this study, the influence of yield criteria was investigated to predict the failure of a reactor cavity under a typical postulated condition through detailed parametric finite element analyses. Further analyses using a geometrically simplified equivalent model with homogeneous concrete properties were also performed to examine its effectiveness as an alternative to the detailed reinforcement concrete model. Results: By comparing finite element analysis results such as cracking, crushing, stresses, and displacements, the Willam-Warnke model was derived for practical use, and failure criteria applicable to the reactor cavity under the severe accident condition were discussed. Conclusion: It was proved that the reactor cavity sustained its intended function as a barrier to avoid release of radioactive materials, irrespective of the different yield criteria that were adopted. In addition, from a conservative viewpoint, it seems possible to employ the simplified equivalent model to determine the damage extent and weakest points during the preliminary evaluation stage.