• Title/Summary/Keyword: Structural Safety Evaluation

Search Result 1,011, Processing Time 0.029 seconds

Ballistic Analysis and Stacking Sequence of Laminate Plate for Enhancing Bulletproof Performance (방탄 성능 향상을 위한 적층 평판의 피탄 해석 및 적층 배열 연구)

  • Ki Hyun Kim;Min Kyu Kim;Min Je Kim;Myung Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.331-338
    • /
    • 2023
  • Modern bulletproof armor must be light and have excellent penetration resistance to ensure the mobility and safety of soldiers and military vehicles. The ballistic performance of heterogeneous structures of laminated flat plates as bulletproof armor depends on the arrangement of constituent materials for the same weight. In this study, we analyze bulletproof performance according to the stacking sequence of laminated bulletproof armor composed of Kevlar, ultra-high molecular weight polyethylene, and ethylene-vinyl-acetate foam. A ballistic analysis was performed by colliding a 7.62 × 51 mm NATO cartridge's M80 bullet at a speed of 856 m/s with six lamination arrangements with constituent materials thicknesses of 5 mm and 6.5 mm. To evaluate the bulletproof performance, the residual speed and residual energy of the projectile that penetrated the heterogeneous laminated flat plates were measured. Simulation results confirmed that the laminated structure with a stacking sequence of Kevlar, ultra-high molecular weight polyethylene, and ethylene-vinyl-acetate foam had the best bulletproof performance for the same weight.

Service life evaluation of HPC with increasing surface chlorides from field data in different sea conditions

  • Jong-Suk Lee;Keun-Hyeok Yang;Yong-Sik Yoon;Jin-Won Nam;Seug-Jun Kwon
    • Advances in concrete construction
    • /
    • v.16 no.3
    • /
    • pp.155-167
    • /
    • 2023
  • The penetrated chloride in concrete has different behavior with mix proportions and local exposure conditions, even in the same environments, so that it is very important to quantify surface chloride contents for durability design. As well known, the surface chloride content which is a key parameter like external loading in structural safety design increases with exposure period. In this study, concrete samples containing OPC (Ordinary Portland Cement), GGBFS (Ground Granulated Blast Furnace Slag), and FA (Fly Ash) had been exposed to submerged, tidal, and splash area for 5 years, then the surface chloride contents changing with exposure period were evaluated. The surface chloride contents were obtained from the chloride profile based on the Fick's 2nd Law, and the regression analysis for them was performed with exponential and square root function. After exposure period of 5 years in submerged and tidal area conditions, the surface chloride content of OPC concrete increased to 6.4 kg/m3 - 7.3 kg/m3, and the surface chloride content of GGBFS concrete was evaluated as 7.3 kg/m3 - 11.5 kg/m3. In the higher replacement ratio of GGBFS, the higher surface chloride contents were evaluated. The surface chloride content in FA concrete showed a range of 6.7 kg/m3 to 9.9 kg/m3, which was the intermediate level of OPC and GGBFS concrete. In the case of splash area, the surface chloride contents in all specimens were from 0.59 kg/m3 to 0.75 kg/m3, which was the lowest of all exposure conditions. Experimental constants available for durability design of chloride ingress were derived through regression analysis over exposure period. In the concrete with GGBFS replacement ratio of 50%, the increase rate of surface chloride contents decreased rapidly as the water to binder ratio increased.

Machine Learning-based Rapid Seismic Performance Evaluation for Seismically-deficient Reinforced Concrete Frame (기계학습 기반 지진 취약 철근콘크리트 골조에 대한 신속 내진성능 등급 예측모델 개발 연구)

  • Kang, TaeWook;Kang, Jaedo;Oh, Keunyeong;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.193-203
    • /
    • 2024
  • Existing reinforced concrete (RC) building frames constructed before the seismic design was applied have seismically deficient structural details, and buildings with such structural details show brittle behavior that is destroyed early due to low shear performance. Various reinforcement systems, such as fiber-reinforced polymer (FRP) jacketing systems, are being studied to reinforce the seismically deficient RC frames. Due to the step-by-step modeling and interpretation process, existing seismic performance assessment and reinforcement design of buildings consume an enormous amount of workforce and time. Various machine learning (ML) models were developed using input and output datasets for seismic loads and reinforcement details built through the finite element (FE) model developed in previous studies to overcome these shortcomings. To assess the performance of the seismic performance prediction models developed in this study, the mean squared error (MSE), R-square (R2), and residual of each model were compared. Overall, the applied ML was found to rapidly and effectively predict the seismic performance of buildings according to changes in load and reinforcement details without overfitting. In addition, the best-fit model for each seismic performance class was selected by analyzing the performance by class of the ML models.

Strength Evaluation of Telescopic Sliding Doorstep Equipment for Railway Vehicle (철도차량 슬라이드식(텔레스코픽) 승강문 스텝의 강도평가)

  • Kim, Chul-Su;Park, Min-Heung
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.352-356
    • /
    • 2012
  • Heights of a platform above the rail for the passenger train in the country are classified into two categories such as the low level (500mm; mainline) and the high level (1,135mm; metropolitan subway line) platforms. In order to operate similarly both a mainline railroad and a metropolitan subway line, as the requisite door safety system, it is necessary to develop the doorstep equipment of the rolling stock regardless of both the low and high level platforms. In this study, Structural analysis and mechanical strength test of doorstep equipments used for two types of platforms are performed on the supposition that the train only for the low level platform could stop in the both low and high level platforms.

Design Improvement of the Driving Bevel Gear in Transmissions of a Tracked Vehicle (궤도차량 변속기 구동용 베벨기어의 개선설계)

  • Jung, Jae-Woong;Kim, Kwang-Pil;Ji, Hyun-Chul;Moon, Tae-Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.1-6
    • /
    • 2015
  • Transmission of a tracked vehicle designed for multiple functions such as steering, gear-shifting, and braking is a core component of heavy vehicle to which the power is transferred based on combined technology of various gears, bearing, and fluid machineries. Robustness and durability of transmission, however, have been issued due to a large number of driving units and sub-components inside its body. The bevel gears are major components for the transmission of power in a transmission. Increasing the tooth surface roughness and chamfering of the bevel gears, especially, we aim to improve the quality of transmission. In this study, design structural evaluation is conducted on bevel gears of transmission for tracked vehicle using the ROMAX-DESIGNER program. By doing so, design safety of the bevel gears has been evaluated based on the gear strength theory of ANSI/AGMA 2003 B97 standard.

Structural Analysis and Practitioner Needs Survey for a WMSD Prevention Program (근골격계질환 예방관리 프로그램에 대한 구조 분석 및 실무자 요구 사항 조사)

  • Jung, Ki-Hyo;Lee, Sang-Ki;Kwon, O-Chae;You, Hee-Cheon;Kim, Dae-Seong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.35-41
    • /
    • 2005
  • The KOSHA codes H-31 and H-30 provide general guidelines to establish a prevention program for work-related musculoskeletal disorders(WMSD). Understanding of the components and practitioner needs for a WMSD prevention program is necessary for effective revision and implementation of the KOSHA codes. The present study established a comprehensive structure for a WMSD prevention program and surveyed practitioner needs for the KOSHA codes. The comprehensive prevention program structure, consisting of 7 parts(organization, education, risk management, medical management, program evaluation, and record keeping) and 90 items, was constructed by analyzing WMSD prevention guidelines published by various government agencies such as KOSHA, OSHA and NIOSH. Next, 20 practitioners, from four industry sectors(auto manufacturing, auto part manufacturing, shipbuilding, and machinery), working in a safety and health department or labor union, were interviewed to collect opinions for the KOSHA codes in terms of relevance, government support, and additional information needed. Guidelines of the KOSHA codes requiring modifications and government supports were identified, which can be used to revise the KOSHA codes and to establish a government policy to promote the implementation of the KOSHA codes. Lastly, the survey revealed that integrated, customized, quantitative, and case information for WMSD prevention is additionally needed, which can be used as design guidelines for a WMSD prevention program manual for practitioners.

Dynamic Characteristic Evaluation of the Bucket Elevator Chain Pin and Plate (버킷 엘리베이터 체인의 동특성 평가)

  • Kim, Chang Uk;Lee, Dong Woo;Park, Seung Bin;Song, Jung Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.211-215
    • /
    • 2017
  • This research analyzes bucket elevator roller chain pins by finite element (FE) analysis and static structural analysis for a lightweight pin design. The stress distribution of light weight roller chain pins under static load is analyzed for safety factors and damping effect. The results show that the stress distribution is higher on the plate than on the bush pin. In order to compare experimental and FE analysis results, a light weight design approach was used to produce a prototype base pin. Because the inner diameter of the pin was different, the impact damping effect was most appropriate when the inner diameter was 34.05 mm, and it is used as basic research data on the impact of the roller chain and sprocket.

Non-linear performance analysis of existing and concentric braced steel structures

  • Erdem, R. Tugrul
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.59-74
    • /
    • 2015
  • Since there are several places located in active seismic zones in the world, serious damages and losses have happened due to major scaled earthquakes. Especially, structures having different irregularities have been severely damaged or collapsed during these seismic events. Behavior of existing structures under several loading conditions is not completely determined due to some uncertainties. This situation reveals the importance of design and analysis of structures under seismic effects. Several non-linear static procedures have been developed in recent years. Determination of the seismic safety of the existing structures and strengthening techniques are significant civil engineering problems Non-linear methods are defined in codes to determine the performance levels of structures more accurately. However, displacement based ones give more realistic results. These methods provide more reliable evaluation possibilities for existing structures with developing computer technology. In this study, non-linear performance analysis of existing and strengthened steel structures by X shaped bracing members with 3, 5 and 7 stories which have soft story irregularity is performed according to FEMA-356 and Turkish Earthquake Code-2007. Damage ratios of the structural members and global performance levels are determined as well as modal properties and story drift ratios after non-linear finite elements analysis for each structure.

Dynamic characteristics assessment of reactor vessel internals with fluid-structure interaction

  • Je, Sang Yun;Chang, Yoon-Suk;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1513-1523
    • /
    • 2017
  • Improvement of numerical analysis methods has been required to solve complicated phenomena that occur in nuclear facilities. Particularly, fluid-structure interaction (FSI) behavior should be resolved for accurate design and evaluation of complex reactor vessel internals (RVIs) submerged in coolant. In this study, the FSI effect on dynamic characteristics of RVIs in a typical 1,000 MWe nuclear power plant was investigated. Modal analyses of an integrated assembly were conducted by employing the fluid-structure (F-S) model as well as the traditional added-mass model. Subsequently, structural analyses were carried out using design response spectra combined with modal analysis data. Analysis results from the F-S model led to reductions of both frequency and Tresca stress compared to those values obtained using the added-mass model. Validation of the analysis method with the FSI model was also performed, from which the interface between the upper guide structure plate and the core shroud assembly lug was defined as the critical location of the typical RVIs, while all the relevant stress intensities satisfied the acceptance criteria.

Assessment of Fracture Behaviors for CIP Anchors Fastened to Cracked and Uncracked Concretes

  • Yoon, Young-Soo;Kim, Ho-Seop;Kim, Sang-Yun
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.33-41
    • /
    • 2001
  • This paper presents the crack effect on CIP anchors and prediction of tensile capacity, as governed by concrete cone failure. Single anchors where located at center of concrete specimen. Three different types of cracks such as crack width of 0.2 mm and 0.5 mm, crack depth of 10 cm and 20cm , and crack location of center and off-center point were simulated. Static tensile load was applied to 7/8-in. CIP anchors of 10 cm and 20 cm embedment length in concrete with compressive strength of 280 kgf/$\textrm{cm}^2$. Tested pullout capacities were compared to the values determined using current design methods (such as ACI 349-97, ACI 349 revision and CEB-FIP which is based on CCD Method). The comparison of CCD Method and ACI revision showed almost the same values in uncracked concrete specimen. In cracked concrete, CCD Method predicted conservative values. Three-dimensional non-linear FEM modeling also has been performed to determine the stresses distribution and crack inclination.

  • PDF