• Title/Summary/Keyword: Structural Safety Evaluation

Search Result 1,007, Processing Time 0.026 seconds

Design and Structural Safety Evaluation of Transfer Cask for Dry Storage System of PWR Spent Nuclear Fuel

  • Taehyung Na;Youngoh Lee;Taehyeon Kim;Yongdeog Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.503-516
    • /
    • 2023
  • A transfer cask serves as the container for transporting and handling canisters loaded with spent nuclear fuels from light water reactors. This study focuses on a cylindrical transfer cask, standing at 5,300 mm with an external diameter of 2,170 mm, featuring impact limiters on the top and bottom sides. The base of the cask body has an openable/closable lid for loading canisters with storage modules. The transfer cask houses a canister containing spent nuclear fuels from lightweight reactors, serving as the confinement boundary while the cask itself lacks the confinement structure. The objective of this study was to conduct a structural analysis evaluation of the transfer cask, currently under development in Korea, ensuring its safety. This evaluation encompasses analyses of loads under normal, off-normal, and accident conditions, adhering to NUREG-2215. Structural integrity was assessed by comparing combined results for each load against stress limits. The results confirm that the transfer cask meets stress limits across normal, off-normal, and accident conditions, establishing its structural safety.

A Study on Structural Safety Evaluation of let Vane under very High Temperature and Dynamic Pressure (초고온 동압을 밭는 제트 베인의 구조 안전성 평가에 대한 연구)

  • Park Sunghan;Lee Sangyeon;Park Jongkyoo;Kim Wonhoon;Moon Soonil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.18-24
    • /
    • 2005
  • To evaluate structural safety factor of the jet vane for the thrust deflection system under the dynamic pressure and very high temperature(2700$^{\circ}C$ ) of the combustion gas flow, the high temperature tension tests of refractory metals and 3-D nonlinear numerical simulations are performed. Through the analysis of high temperature structure behavior for jet vane, the structure safety of jet vane is evaluated, and numerical results are compared with static ground tests of jet vanes. It has been found that most of structural and thermal loading is concentrated on the vane shaft which worked as safe under 1400$^{\circ}C$. From the comparison of static ground tests and numerical results, the evaluation criterion using the vane load and shaft displacement is more useful to estimate the structural safety than using the equivalent stress.

Problems of Insufficient Detailed Inspection and Precision Safety Diagnosis and the Improving Direction for the Evaluation System (부실 정밀점검 및 정밀안전진단의 문제점과 평가제도의 개선방향)

  • Ha, Myung Ho;Park, Jong Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.160-168
    • /
    • 2011
  • As importance of the field of maintenance and management come to the fore because of collapses of the Seongsu bridge and the Sampoong department store, "Special Act for the Safety Control of Public Structures" was established in 1995 and the major maintenance and management system began taking effect "Detailed inspection and Precision safety diagnosis". However, a technical standard of "Detailed inspection and Precision safety diagnosis" was low because its history was not long, and also the results of research were not enough so anxiety for "Insufficient Detailed inspection and Precision safety diagnosis" was continuously left. While its evaluation system introduced in 2002, the ratio of "Insufficient Detailed inspection and Precision safety diagnosis" has been getting lower. However, according to the evaluation result after carrying out "Detailed inspection and Precision safety diagnosis" recently, it seems difficult to become lower for the ratio of "Insufficient Detailed inspection and Precision safety diagnosis" in future. Therefore, it is considered of questionary survey of the concerned organization and the mechanism side in connection with "Insufficient Detailed inspection and Precision safety diagnosis". So it is arranged the fundamental problems caused by an "Insufficient Detailed inspection and Precision safety diagnosis" that is to show the improving direction of the existing evaluation system in a based on this.

Assessment of Structural Safety of Buried Water Mains (매설관의 구조적 안전성 평가에 관한 연구)

  • Bae, Chul-Ho;Kim, Ju-Hwan;Kim, Jung-Hyun;Hong, Sung-Ho;Lee, Kyung-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.151-164
    • /
    • 2007
  • Criteria for rehabilitation priority are discussed to evaluate structural stability of deteriorated water transport and transmission pipes, in this study. For the purposes, safety factor is introduced and estimated by measuring tensile strength and by analyzing stress caused by the internal-external loads working on buried pipe body. Related informations are surveyed and collected under various conditions in the fields by digging out and the structural stability is assessed. In the evaluation results of structural safety, it is shown that steel pipe is more affected by external load than internal load. The average external load is estimated as $53.7kg/cm^2$ and total hoop stress is estimated by $2676.5kg/cm^2$. Also, Poisson effect into longitudinal direction due to internal and external loads is most influential on hoop stress. The calculated safety factors of hoop stress are ranged from 0.7 to 5.2 with average value of 2.1, considering a bending stress to longitudinal direction. The decision of rehabilitation priority by safety factors show that structural safety of CIP sample 1(S1) was assessed at the lowest order with safety factor value, 0.7 and that of DI sample 15(S15) was evaluated as the most stable in structural aspect.

Technique to Evaluate Safety and Loaded Heavy Equipment Grade in RC Building during Demolition Work (RC건축물 해체공사의 안전성 평가기법 및 탑재장비 등급 제안)

  • Park, Seong-Sik;Lee, Bum-Sik;Kim, Hyo-Jin;Sohn, Chang-Hak
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.195-204
    • /
    • 2011
  • During mechanical demolition of RC structures, weights of dismantling equipment and demolition waste of building are applied to unexpected load which did not be considered during the design of structural member. Nevertheless, the loading of dismantling equipment and dismantling process are mainly dependent on field managers' field workers' or experiences without considering safety of structural member by a structural engineer. It is urgently required that reflecting actual circumstance of mechanical demolition, safety evaluation method to evaluate the safety and the guideline for appropriate capacity of structural member to support dismantling equipment weight, be provided. Through site investigation and questionnaire on field workers, this paper proposed demolition waste load, load factor, strength reduction factor, and so on. These are essential to safe evaluation of a building, ready to demolition. Considering actual circumstance of mechanical demolition, safety evaluation method of building and design method of slab and beam was suggested to a dilapidated building. An capability to loading of dismantling equipment was proposed, applied to RC slab and RC beam. Therefore, the suggested safety evaluation method and the guideline for an capability to loading of dismantling equipment weight can reasonably evaluate the capacity of structural member in demolition and use effectively as increasing efficiency and improving safety of demolition through proper management of dismantling equipments.

Difference of Deterioration According to Exposed Condition of Column in Wooden Traditional Building (노출 환경에 따른 목조 고건축물 기둥의 열화 차이)

  • Kim, Gwang-Chul;Bae, Mun-Sung;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.58-68
    • /
    • 2003
  • Capacity assessment of structural member must be ahead of the safety assessment of wooden traditional building. Capacity assessment of structural member has been dependent on empirical method with visual inspection even now. Safety assessment of building, however, can be more correct and reasonable provided non-destructive evaluation technique that scientific and logic would be used to evaluate the capacity of structural member. For that purpose, non-destructive evaluation technique was applied to column among many structural members of wooden traditional building to examine the possibility of capacity assessment of structural member. And then, those data will be used as a basic data for capacity assessment of structural member in a following study. Specially, deterioration progress levels of column according to exposed condition were measured. Similar results were obtained as compared with results of visual inspection, so there was a good possibility of application for non-destructive evaluation technique.

Pontoon Type Design and Structural Safety Estimation (폰툰형 플랫폼 설계 및 구조안전성 평가)

  • Seo, Kwang-Cheol;Oh, Jung-Mo;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.604-610
    • /
    • 2018
  • Recently, due to the rapid growth of the leisure industry, demand for small-scale flotation and mooring pontoon platforms has been increasing rapidly. Standard rules for the design and structural safety of such structures have become necessary. This paper provides criteria that can be referenced when designing pontoon platforms, and also introduces structural safety evaluation procedures. In this study, the structural safety and stability of a 15-meter pontoon platform were investigated through structural design and finite element analysis. For platforms of less than 10 meters in length, a simple structural calculation can be used, but for platforms over 10 meters, a detailed structural strength review must be considered to meet safety guidelines defined in existing regulations. The structural strength of the initial design was examined and its structural safety was verified. For future research, it is an evaluative system was developed that can be used to examine the various loading conditions during design.