• Title/Summary/Keyword: Structural Safety

Search Result 4,442, Processing Time 0.028 seconds

A Study on Resistance of Chloride Ion Penetration in Ground Granulated Blast-Furnace Slag Concrete (고로슬래그 미분말 콘크리트의 염화물 침투 저항성에 관한 연구)

  • Song, Ha-Won;Kwon, Seung-Jun;Lee, Suk-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.400-408
    • /
    • 2003
  • Chloride ion inside concrete destroys the so-called passive film surrounding reinforcing bars inside concrete so that the so-called salt attack accelerates corrosion which is the most critical factor for durability as well as structural safety of reinforced concrete structures. Recently, as a solution of the salt attack, the ground granulated blast-furnace slag(GGBFS) have been used as binder or blended cement more extensively. In this paper, characteristics of chloride ion diffusion for the GGBFS concrete, which is known to possess better resistance to damage due to the chloride ion penetration than ordinary portland cement(OPC) concrete possesses, are analyzed and a chloride ion diffusion model for the GGBFS concrete is proposed by modifying an existing diffusion model for the OPC concrete. The proposed model is verified by comparing diffusion analysis results using the model accelerated chloride penetration test results for concrete specimens as well as field test results for an RC bridge pier. Then, an optimal resistance condition to chloride penetration for the GGBFS concrete is obtained according to degrees of fineness and replacement ratios of the GGBFS concrete. The result shows that the GGBFS concrete has better resistance to chloride ion penetration than OPC concrete has and the resistance is more affected by the replacement ratio than the degree of fineness of the GGBFS.

Experimental Studies on the Effect of Various Design Parameters on Thermal Behaviors of High Strength Concrete Columns under High Temperatures (다양한 설계변수에 따른 고강도 콘크리트 기둥의 열적 거동 분석을 위한 실험 연구)

  • Shin, Yeong-Soo;Park, Jee-Eun;Mun, Ji-Young;Kim, Hee-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.377-384
    • /
    • 2011
  • Although concrete is considered as fire proof materials, high strength concrete shows severe material and structural damages when exposed to fire. To understand such damages in high strength concrete structures, the effects of various design parameters and fire condition on the thermal behaviors of high strength concrete structures are investigated in this study. In order to achieve this goal, fire tests are performed on high strength concrete columns with different fire conditions and design parameters including cross sectional area, cover thickness, and reinforcement alignment. To investigate thermal behaviors, temperature distributions and amount of spalling are measured. In overall, the columns show rapidly increasing inner temperatures between 30~60 mins of the fire tests due to spalling. In detail, the higher temperature distributions are observed from the columns with the larger cross section and less cover thickness. Moreover, among the columns with same reinforcing ratio, larger number of reinforcements with the smaller diameter causes the higher temperature distribution. The findings from the experimental study allow not only understanding of thermal behaviors of high strength concrete columns under fire, but also guidance in revising fire safety design.

A Study on the Variation of Strength and Color According to Heated Temperatures of Fire­Damaged Concrete (화재피해 콘크리트의 수열온도에 따른 강도 및 색상 변화 연구)

  • Choi, Kwang-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.325-332
    • /
    • 2020
  • In the safety diagnosis of fire-damaged concrete structures, it is difficult to evaluate the strength and changes in materials due to high temperatures with the existing durability analysis method. In particular, the compressive strength of specimen with different damage levels by thickness is used as a representative value for reducing the compressive strength of the structural member. In this study, a heating experiment was performed with only top face heating and fully heating conditions at 400℃ to 800℃. After heating, splitting tensile test and color analysis were performed to sliced specimens with a thickness of 20mm accompanied by the compressive test of a fully heated specimen. As a result of the experiment, the compressive strength reduction rate calculated from the splitting tensile strength of every sliced specimen appeared to be within 10% of the fully heated specimen on aver age, and the hue value analysis showed consistent color values were observed by red at 400℃-600℃ and gray at 700℃ or above. It follows that the techniques proposed in this study are reasonably assessable to estimate heated temperature and residual compressive strength and damage depth of concrete.

The Experimental Study on Transverse Field Joint Method of Precast Road Deck Slab of Double Deck Tunnel in Great Depth (대심도 복층터널 프리캐스트 중간슬래브의 횡방향 현장이음방식에 대한 실험연구)

  • Lee, Doo-Sung;Kim, Bo-Yeon;Bae, Chul-Gi;Hur, Jae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.23-32
    • /
    • 2017
  • The joints between precast PSC slabs of the intermediate road slab in double deck tunnel are inevitably generated in the road traffic vehicle traveling direction. Therefore, it is important to make the behavior of parts on the joint in one piece. The imtermediate road slab system of double deck tunnel in great depth proposed in this study will be constructed with precast PSC slab in order to minimize the construction period. And the joint connection between the precast slab has been developed in two methods: the 'Transverse tendon reinforcement method' and 'High strength bolts connection method'. Also, the experiments were performed for the full scale model in order to evaluate the performance of the intermediate road deck slab with two type joints systems, the structural stability was verified through the F.E.M analsysis. The results of static loading test and F.E.M analysis investigated a very stable behavior of intermediate road deck slab in double deck tunnel applying the joint methods developed in this study, in the cracks and deflections to satisfy the design standards of Highway Roads Bridges (2011), it was determined that there is no problem even servicebility.

Optimum Reinforcement Conditions of Large Diameter Reinforcement for Steep Slope of Conventional Railway Embankment under Train Loading (기존선 성토사면 급구배화를 위한 열차 하중 하 대구경 봉상보강재의 최적 보강조건)

  • Kwak, Chang-Won;Kim, Dae-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.43-50
    • /
    • 2016
  • A reinforcement is required to ensure the structural safety in case of railway embankment excavation under railway load. A large diameter soil nailing with concrete wall is applied as the reinforcement method instead of the conventional soil nailing system. In this study, a series of 3 dimensional numerical analyses are performed to investigate the optimum reinforcement considering 15 different conditions based on the length, lateral spacing, diameter, and inclination of the reinforcement. The interface between soil nail and perimetric grout is considered by means of cohesion, stiffness and perimeter of the grout. 0.3 m of reinforcement diameter is assessed as the most appropriate based on the economical viewpoint though ground displacement decreases with the increase of diameter, however the difference of displacement is negligible between 0.4 m and 0.3 m of diameter. Surface settlement, lateral displacement of wall, and stress of reinforcement are calculated and economic viewpoint to reinforce embankment considered. Consequently, the optimum reinforcement conditions considering those factors are evaluated as 3 m in length, 0.3 m in diameter, 1.5 m in lateral spacing, and 10 degree of inclination angle in the case of 3 m of excavation depth. Additionally, inclined potential failure surface occurs with approximately 60 degrees from the end of nails and the surface settlement and wall lateral displacement are restrained successfully by the large diameter soil nailing, based on the result of shear strain rate.

Strength Characteristics of Hollow Prestressed Concrete Filled Steel Tube Piles for Hybrid Composite Piles (복합말뚝용 중공형 콘크리트 충전 강관말뚝의 강도 특성)

  • Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.37-46
    • /
    • 2018
  • Hollow prestressed concrete filled steel tube (HCFT) piles, which compose hollow PHC piles inside thin wall steel tubes, are developed. In order to investigate the strength characteristics of HCFT piles, flexural and shear tests were conducted on HCFT piles as well as PHC and steel pipe piles with the same diameter. Results of the test program showed that the flexural strength of HCFT piles was 2.88 and 1.19 times those of ICP and steel pipe piles with thickness of 12 mm, respectively, and its shear strength was 2.40 times that of steel pipe piles. The shear key attached to the inside of thin wall steel tube did not affect the flexural behavior of HCFT piles. It was also observed that the flexural strengths of HCFT piles with diameters of 450 and 500 mm were 35 to 63% higher than the sum of the flexural strengths of its components, respectively, because the strength of concrete in compressive zone increased by confining effect of thin wall steel tube on concrete. HCFT piles used as upper piles in hybrid composite piles might decrease the lateral displacement and increase the structural safety of structures subjected to lateral loads.

A Study on the Ultimate Strength Behavior for Ship Perforated Stiffened Plate (선체 유공보강판의 최종강도 거동에 관한 연구)

  • Ko Jae-Yong;Lee Jun-Kyo;Park Joo-Shin;Bae Dong-Kyun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.141-146
    • /
    • 2005
  • Ship have cutout inner bottom and girder and floor etc. Ship's structure is used much, and structure strength must be situated, but establish new concept when high stress interacts sometimes fatally the area. There is no big problem usually by aim of weight reduction, a person and change of freight, piping etc. Because cutout's existence grow up in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, stiffened perforated plate considering buckling strength and ultimate strength is one of important design criteria which must examine when decide structural concept at initial design. Therefore, and, reasonable buckling strength about perforated stiffened plate need to ultimate strength limited design . Calculated ultimate strength varied several web height and cutout's dimension, and thickness in this investigated data. Used program(ANSYS) applied F.E.A code based on finite element method.

  • PDF

Experimental and numerical investigations on remaining strengths of damaged parabolic steel tubular arches

  • Huang, Yonghui;Liu, Airong;Pi, Yong-Lin;Bradford, Mark A.;Fu, Jiyang
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • This paper presents experimental and numerical studies on effects of local damages on the in-plane elastic-plastic buckling and strength of a fixed parabolic steel tubular arch under a vertical load distributed uniformly over its span, which have not been reported in the literature hitherto. The in-plane structural behaviour and strength of ten specimens with different local damages are investigated experimentally. A finite element (FE) model for damaged steel tubular arches is established and is validated by the test results. The FE model is then used to conduct parametric studies on effects of the damage location, depth and length on the strength of steel arches. The experimental results and FE parametric studies show that effects of damages at the arch end on the strength of the arch are more significant than those of damages at other locations of the arch, and that effects of the damage depth on the strength of arches are most significant among those of the damage length. It is also found that the failure modes of a damaged steel tubular arch are much related to its initial geometric imperfections. The experimental results and extensive FE results show that when the effective cross-section considering local damages is used in calculating the modified slenderness of arches, the column bucking curve b in GB50017 or Eurocode3 can be used for assessing the remaining in-plane strength of locally damaged parabolic steel tubular arches under uniform compression. Furthermore, a useful interaction equation for assessing the remaining in-plane strength of damaged steel tubular arches that are subjected to the combined bending and axial compression is also proposed based on the validated FE models. It is shown that the proposed interaction equation can provide lower bound assessments for the remaining strength of damaged arches under in-plane general loading.

Seismic Performance and Damage Prediction of Existing Fire-protection Pipe Systems Installed in RC Frame Structures (철근콘크리트 구조물 내 부착된 수계 관망시스템의 내진거동 및 손상예측)

  • Jung, Woo-Young;Ju, Bu-Seog
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.37-43
    • /
    • 2011
  • Reliability of piping systems is essential to the safety of any important industrial facilities. During an earthquake, damage to the piping system can occur. It can also cause considerable economic losses and the loss of life following earthquakes. Traditionally, the study of the secondary system was less important than primary structure system, however it has recently been emerging as a key issue for the effective maintenance of the structural system and to help reduce nonstructural earthquake damage. The primary objectives of this study are to evaluate seismic design requirements and the seismic performance of gas and fire protection piping systems installed in reinforced concrete (RC) buildings. In order to characterize the seismic behavior of the existing piping system in an official building, 10 simulated earthquakes and 9 recorded real earthquakes were applied to ground level and the building system by the newmark average acceleration time history method. The results developed by this research can be used for the improvement of new seismic code/regulatory guidelines of secondary systems as well as the improvement of seismic retrofitting or the strengthening of the current piping system.

Mechanical Properties of Porous Concrete For Pavement Using Recycled Aggregate and Polymer (재생골재와 폴리머를 이용한 포장용 포러스 콘크리트의 역학적 특성)

  • Park Seung-Bum;Yoon Eui-Sik;Seo Dae-Seuk;Lee Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.595-602
    • /
    • 2005
  • The purpose of this study is to utilize recycled concrete aggregates as permeable pavement materials. This study evaluates mechanical properties and durability of porous concrete depending on mixing rates of recycled aggregates and polyme. As a result, void ratio and permeability coefficient of porous concrete for pavement increased a little as mixing rate of recycled aggregates increased. Void ratio and permeability coefficient increased a lot as mixing rate of polymer increased. As polymer was mixed $20\%$, national regulation of permeable concrete for pavement($8\%$ and 0.01cm/sec) was met. Compressive strength and flexural strength decreased as mixing rate of recycled aggregates increased but they increased a lot as mixing rate of polymer increased. Even when recycled aggregates were mixed $75\%\;with\;10\%$ polymer mixed, national regulation of pavement concrete(18MPa and 4.5MPa) was met. In addition, regarding sliding resistance, BPN increased as mixing rate of recycled aggregates increased. But BPN decreased as polymer was mixed. Compared to crushed stone aggregates, abrasion resistance and freeze-thaw resistance decreased as mixing rate of recycled aggregates Increased. When polymer was mixed, abrasion resistance and freeze-thaw resistance improved remarkably. Compared to non-mixture, $10\%$ mixture of polymer improved abrasion resistance and freeze-thaw resistance about $8.6\%$ and 3.8times respectively.