• Title/Summary/Keyword: Structural Safety

Search Result 4,442, Processing Time 0.033 seconds

Structural Performance Evaluation of System Scaffolding for Elevator Installation Work (엘리베이터 설치 작업용 시스템 비계의 구조 성능 평가)

  • Jong Moon Hwang;Gi Yeol Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.61-68
    • /
    • 2023
  • This study performed a structural performance evaluation of a system scaffolding for elevator installation work developed in previous studies. The structural performance was evaluated via a structural test conducted to apply the working load specified in the design standard. The deflection of the horizontal member and the stress of each member constituting the system scaffolding were measured. Consequently, the structural safety evaluation including structural behavior and required performance was performed using the deflection and stresses measured from the structural test. The structural test and safety evaluation results based on the heavy working load corresponding to the design load indicated that the deflection, which is the performance criterion of the horizontal member, did not exceed the allowable value. Further, each member's stress, which is a safety evaluation indicator, did not exceed the allowable strength for both horizontal and vertical members with bending behavior and fordable bracing with tensile behavior, while also satisfying the required safety factor. In addition, the results confirmed the safety against deformation, partial damage, and destruction owing to excessive and maximum load. Therefore, the system scaffolding developed in this study satisfies both the structural performance and safety required by the design standards; thus, it can be applied to elevator installation work sites.

Evaluation of Structural Safety for Hydrogen Tube Trailer Considering Dynamic Property (동적 특성을 고려한 수소 튜브 트레일러의 구조 안전성 평가)

  • Y. B. Kim;M. G. Kim;D. C. Ko
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.169-177
    • /
    • 2024
  • Recently, hydrogen energy has been widely used because of strict regulations on greenhouse gas emissions. For using the hydrogen energy, it is required to supply hydrogen through a tube trailer. However hydrogen tube trailer can have excessive load problems during transportation due to reasons such as road shape and driving method, which may lead a risk of hydrogen leakage. So it is necessary to secure a high level of safety. The purpose of this study is to evaluate structural safety for the conservative design of hydrogen tube trailer. First, finite element(FE) modeling of the designed hydrogen tube trailer was performed. After that, safety evaluation method was established through static structural simulation based on the standard GC207 conditions. In addition, effectiveness of the designed model was confirmed through the results of the structural safety evaluation. Finally, driving simulation was used to derive acceleration graph according to time, which was considered as a dynamic property for the evaluation of conservative tube trailer safety evaluation. And dynamic structural simulation was conducted as a condition for actual transportation of tube trailer by applying dynamic properties. As a results, conservative safety was evaluated through dynamic structural simulation and the safety of hydrogen tube trailer was confirmed through satisfaction of the safety rate.

Structural safety factor for small unmanned aircraft (소형 무인기 구조 안전계수)

  • Kim, Sung-Joon;Lee, Seung-gyu;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.2
    • /
    • pp.12-17
    • /
    • 2017
  • Manned aircraft structural design is based on structural safety factor of 1.5, and this safety factor is equivalent to a probability of failure of between 10-2 and 10-3. The target failure probability of FARs is between 10-6 and 10-9 per flight according to aircraft type. NATO released STANAG 4703 to established the airworthiness requirements for small UAV which is less than 150kg. STANAG 4703 requires the Target Level of Safety according to MTOW. The requirements of failure probability for small UAV is between 10-4 and 10-5. In this paper, requirements of airworthiness certification for small UAV were investigated and the relationship of safety factors to the probability of structural failure is analyzed to reduce measure of safety factor and structural weight of unmanned aircraft.

Structural Safety Analysis of a Long Span Cable-stayed Bridge with a Partially Earth Anchored Cable System on Dynamic Loads during Construction (일부타정식 케이블 시스템 장경간 사장교의 시공 중 동적 안전성 분석)

  • Won, Jeong-Hun;Kim, Gyeoung Yun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.104-110
    • /
    • 2016
  • The effect of a partially earth anchored cable system on the structural safety of a long span cable-stayed bridge under seismic and wind loads are examined during construction process. By assuming the FCM (free cantilever method) construction stages with structural vulnerability, a multi-mode spectral analysis and a multi-mode buffeting analysis are performed for specific seismic load and wind load, respectively. Results show that the wind load dominates the structural safety of a cable-stayed bridge during construction. And, the application of a partially earth anchored cable system can enhance structural safety under wind load since the maximum pylon moment in the model with partially earth anchored cable system is reduced by 49% under wind load. In contrast, the maximum pylon moment occurred by seismic load is only decreased by 8%.

Structural safety redundancy-based design method for structure with viscous dampers

  • Hao, Linfei;Zhang, Ruifu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.821-840
    • /
    • 2016
  • A simple design process is proposed for supplemental viscous dampers based on structural safety redundancy. In this process, the safety redundancy of the primary structure without a damper is assessed by the capacity and response spectra. The required damping ratio that should be provided by the supplemental dampers is estimated by taking the structural safety redundancy as a design target. The arrangement of dampers is determined according to the drift distribution obtained by performing pushover analysis. A benchmark model is used to illustrate and verify the validity of this design process. The results show that the structural safety redundancy of the structure provided by the viscous dampers increases to approximately twice that of the structure without a damper and is close to the design target. Compared with the existing design methods, the proposed process can estimate the elastic-plastic response of a structure more easily by using static calculation, and determine the required damping ratio more directly without iterative calculation or graphical process. It can be concluded that the proposed process is simple and effective.

Pontoon Type Design and Structural Safety Estimation (폰툰형 플랫폼 설계 및 구조안전성 평가)

  • Seo, Kwang-Cheol;Oh, Jung-Mo;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.604-610
    • /
    • 2018
  • Recently, due to the rapid growth of the leisure industry, demand for small-scale flotation and mooring pontoon platforms has been increasing rapidly. Standard rules for the design and structural safety of such structures have become necessary. This paper provides criteria that can be referenced when designing pontoon platforms, and also introduces structural safety evaluation procedures. In this study, the structural safety and stability of a 15-meter pontoon platform were investigated through structural design and finite element analysis. For platforms of less than 10 meters in length, a simple structural calculation can be used, but for platforms over 10 meters, a detailed structural strength review must be considered to meet safety guidelines defined in existing regulations. The structural strength of the initial design was examined and its structural safety was verified. For future research, it is an evaluative system was developed that can be used to examine the various loading conditions during design.

A Gaussian process-based response surface method for structural reliability analysis

  • Su, Guoshao;Jiang, Jianqing;Yu, Bo;Xiao, Yilong
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.549-567
    • /
    • 2015
  • A first-order moment method (FORM) reliability analysis is commonly used for structural stability analysis. It requires the values and partial derivatives of the performance to function with respect to the random variables for the design. These calculations can be cumbersome when the performance functions are implicit. A Gaussian process (GP)-based response surface is adopted in this study to approximate the limit state function. By using a trained GP model, a large number of values and partial derivatives of the performance functions can be obtained for conventional reliability analysis with a FORM, thereby reducing the number of stability analysis calculations. This dynamic renewed knowledge source can provide great assistance in improving the predictive capacity of GP during the iterative process, particularly from the view of machine learning. An iterative algorithm is therefore proposed to improve the precision of GP approximation around the design point by constantly adding new design points to the initial training set. Examples are provided to illustrate the GP-based response surface for both structural and non-structural reliability analyses. The results show that the proposed approach is applicable to structural reliability analyses that involve implicit performance functions and structural response evaluations that entail time-consuming finite element analyses.

Effect of one way reinforced concrete slab characteristics on structural response under blast loading

  • Kee, Jung Hun;Park, Jong Yil;Seong, Joo Hyun
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.277-283
    • /
    • 2019
  • In evaluating explosion-protection capacity, safety distance is broadly accepted as the distance at which detonation of a given explosive causes acceptable structural damage. Safety distance can be calculated based on structural response under blast loading and damage criteria. For the applicability of the safety distance, the minimum required stand-off distance should be given when the explosive size is assumed. However, because of the nature of structures, structural details and material characteristics differ, which requires sensitivity analysis of the safety distance. This study examines the safety-distance sensitivity from structural and material property variations. For the safety-distance calculation, a blast analysis module based on the Kingery and Bulmash formula, a structural response module based on a Single Degree of Freedom model, and damage criteria based on a support rotation angle were prepared. Sensitivity analysis was conducted for the Reinforced Concrete one-way slab with different thicknesses, reinforcement ratios, reinforcement yield strengths, and concrete compressive strengths. It was shown that slab thickness has the most significant influence on both inertial force and flexure resistance, but the compressive strength of the concrete is not relevant.

A Case Study on the Structural Safety Evaluation of a building with Adversiting Pillar Tower (광고탑이 설치된 건축 구조물의 구조안전성 평가에 관한 사례 연구)

  • 은충기;채원규;손영현
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.147-152
    • /
    • 1998
  • In this thesis, the structural safety evaluation of a building with adversiting pillar tower were studied. From the structural analysis results of a building with adversiting pillar tower, the bending stress, the shearing stress and the axial stress were calculated, and these member forces were applied to the structural safety evaluation of a building with adversiting pillar tower.

  • PDF

Structural reliability analysis of offshore structure at cold region (저온해역에서의 해양구조물에 대한 구조신뢰성 해석)

  • 이주성
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.8-19
    • /
    • 1997
  • In this study an adequate type of offshore structure at the Sakhalin region as cold region is proposed and its structural design results are presented based on the reliability analysis. Structural safety assessment has been carried out for the proposed offshore structure at the Sakhalin area as designed by the reliability method. And a rational design procedure is presented based on the reliability analysis. Followings are drawn through the present study : - Four colum TLP structure is proposed as an adequate offshore structure type at the cold region like the Sakhalin region and the reliability-based structural design results are presented. It is seen that the proposed type is a more adequate and economic than the fixed type. - Safety assessment of the proposed structure applying the extended incremental load method is performed. - Referring the allowable safety level for offshore structures it has been found present TLP structure has sufficient structural safety at the system level as well as at the component level.

  • PDF