• 제목/요약/키워드: Structural Responses

검색결과 2,421건 처리시간 0.03초

MOGA-Based Structural Design Method for Diagrid Structural Control System Subjected to Wind and Earthquake Loads

  • Kim, Hyun-Su;Kang, Joo-Won
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1598-1606
    • /
    • 2018
  • An integrated optimal structural design method for a diagrid structure and control device was developed. A multi-objective genetic algorithm was used and a 60-story diagrid building structure was developed as an example structure. Artificial wind and earthquake loads were generated to assess the wind-induced and seismic responses. A smart tuned mass damper (TMD) was used as a structural control system and an MR (magnetorheological) damper was employed to develop a smart TMD (STMD). The multi-objective genetic algorithm used five objectives including a reduction of the dynamic responses, additional stiffness and damping, mass of STMD, capacity of the MR damper for the integrated optimization of a diagrid structure and a STMD. From the proposed method, integrated optimal designs for the diagrid structure and STMD were obtained. The numerical simulation also showed that the STMD provided good control performance for reducing the wind-induced and seismic responses of a tall diagrid building structure.

A new bridge-vehicle system part I: Formulation and validation

  • Chan, Tommy H.T.;Yu, Ling;Yung, T.H.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • 제15권1호
    • /
    • pp.1-19
    • /
    • 2003
  • This paper presents the formulation of a new bridge-vehicle system with validation using the field data. Both pitching and twisting modes of the vehicle are considered in the contribution of the dynamic effects in the bridge responses. A heavy vehicle was hired as a control vehicle with known axle weight, axle spacing and spring coefficients. The measured responses were generated from the control vehicle running at a particular speed at a test span at Ma Tau Wai Flyover. The measured responses were acquired using strain gauges installed beneath the girder beams of the test bridge. The simulated responses were generated using BRVEAN that is a self-developed program based on the proposed bridge-vehicle system. The validation shows that the bridge model is valid for representing the test bridge and the governing equations are valid for representing the motion of moving vehicles.

Sufficiency of the spectral shape in predicting peak and cumulative structural earthquake responses

  • Abdollahzadeh, Gholamreza;Sazjini, Mohammad
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.629-637
    • /
    • 2018
  • In recent years, selection of strong ground motion records by means of intensity measures representing the spectral shape of the earthquake excitation has been studied by many researchers. These studies indicate the adequacy of this record selection approach in reduction of the scattering of seismic responses. In present study, this method has been studied more in depth to reveal the sufficiency of the spectral shape in predicting structural seismic responses such as the plastic deformation and the dissipated hysteresis energy which are associated with cumulative properties of the selected records. For this purpose, after selecting the records based on the spectral shape, the correlation of some seismic responses and strong ground motion duration of earthquake records are explored. Findings indicate strong correlation of some structural responses with the significant duration of the records. This fact implies that the spectral shape could not reflect all characteristics of the strong ground motion and emphasizes the importance of additional criteria along with the spectral shape in the record selection.

An accurate substructural synthesis approach to random responses

  • Ying, Z.G.;Zhu, W.Q.;Ye, S.Q.;Ni, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • 제39권1호
    • /
    • pp.47-75
    • /
    • 2011
  • An accurate substructural synthesis method including random responses synthesis, frequency-response functions synthesis and mid-order modes synthesis is developed based on rigorous substructure description, dynamic condensation and coupling. An entire structure can firstly be divided into several substructures according to different functions, geometric and dynamic characteristics. Substructural displacements are expressed exactly by retained mid-order fixed-interfacial normal modes and residual constraint modes. Substructural interfacial degree-of-freedoms are eliminated by interfacial displacements compatibility and forces equilibrium between adjacent substructures. Then substructural mode vibration equations are coupled to form an exact-condensed synthesized structure equation, from which structural mid-order modes are calculated accurately. Furthermore, substructural frequency-response function equations are coupled to yield an exact-condensed synthesized structure vibration equation in frequency domain, from which the generalized structural frequency-response functions are obtained. Substructural frequency-response functions are calculated separately by using the generalized frequency-response functions, which can be assembled into an entire-structural frequency-response function matrix. Substructural power spectral density functions are expressed by the exact-synthesized substructural frequency-response functions, and substructural random responses such as correlation functions and mean-square responses can be calculated separately. The accuracy and capacity of the proposed substructure synthesis method is verified by numerical examples.

Study on the influence of structural and ground motion uncertainties on the failure mechanism of transmission towers

  • Zhaoyang Fu;Li Tian;Xianchao Luo;Haiyang Pan;Juncai Liu;Chuncheng Liu
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.311-326
    • /
    • 2024
  • Transmission tower structures are particularly susceptible to damage and even collapse under strong seismic ground motions. Conventional seismic analyses of transmission towers are usually performed by considering only ground motion uncertainty while ignoring structural uncertainty; consequently, the performance evaluation and failure prediction may be inaccurate. In this context, the present study numerically investigates the seismic responses and failure mechanism of transmission towers by considering multiple sources of uncertainty. To this end, an existing transmission tower is chosen, and the corresponding three-dimensional finite element model is created in ABAQUS software. Sensitivity analysis is carried out to identify the relative importance of the uncertain parameters in the seismic responses of transmission towers. The numerical results indicate that the impacts of the structural damping ratio, elastic modulus and yield strength on the seismic responses of the transmission tower are relatively large. Subsequently, a set of 20 uncertainty models are established based on random samples of various parameter combinations generated by the Latin hypercube sampling (LHS) method. An uncertainty analysis is performed for these uncertainty models to clarify the impacts of uncertain structural factors on the seismic responses and failure mechanism (ultimate bearing capacity and failure path). The numerical results show that structural uncertainty has a significant influence on the seismic responses and failure mechanism of transmission towers; different possible failure paths exist for the uncertainty models, whereas only one exists for the deterministic model, and the ultimate bearing capacity of transmission towers is more sensitive to the variation in material parameters than that in geometrical parameters. This research is expected to provide an in-depth understanding of the influence of structural uncertainty on the seismic demand assessment of transmission towers.

A new statistical moment-based structural damage detection method

  • Zhang, J.;Xu, Y.L.;Xia, Y.;Li, J.
    • Structural Engineering and Mechanics
    • /
    • 제30권4호
    • /
    • pp.445-466
    • /
    • 2008
  • This paper presents a novel structural damage detection method with a new damage index based on the statistical moments of dynamic responses of a structure under a random excitation. After a brief introduction to statistical moment theory, the principle of the new method is put forward in terms of a single-degree-of-freedom (SDOF) system. The sensitivity of statistical moment to structural damage is discussed for various types of structural responses and different orders of statistical moment. The formulae for statistical moment-based damage detection are derived. The effect of measurement noise on damage detection is ascertained. The new damage index and the proposed statistical moment-based damage detection method are then extended to multi-degree-of-freedom (MDOF) systems with resort to the leastsquares method. As numerical studies, the proposed method is applied to both single and multi-story shear buildings. Numerical results show that the fourth-order statistical moment of story drifts is a more sensitive indicator to structural stiffness reduction than the natural frequencies, the second order moment of story drift, and the fourth-order moments of velocity and acceleration responses of the shear building. The fourth-order statistical moment of story drifts can be used to accurately identify both location and severity of structural stiffness reduction of the shear building. Furthermore, a significant advantage of the proposed damage detection method lies in that it is insensitive to measurement noise.

A two-stage structural damage detection method using dynamic responses based on Kalman filter and particle swarm optimization

  • Beygzadeh, Sahar;Torkzadeh, Peyman;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.593-607
    • /
    • 2022
  • To solve the problem of detecting structural damage, a two-stage method using the Kalman filter and Particle Swarm Optimization (PSO) is proposed. In this method, the first PSO population is enhanced using the Kalman filter method based on dynamic responses. Due to noise in the sensor responses and errors in the damage detection process, the accuracy of the damage detection process is reduced. This method proposes a novel approach for solve this problem by integrating the Kalman filter and sensitivity analysis. In the Kalman filter, an approximate damage equation is considered as the equation of state and the damage detection equation based on sensitivity analysis is considered as the observation equation. The first population of PSO are the random damage scenarios. These damage scenarios are estimated using a step of the Kalman filter. The results of this stage are then used to detect the exact location of the damage and its severity with the PSO algorithm. The efficiency of the proposed method is investigated using three numerical examples: a 31-element planer truss, a 52-element space dome, and a 56-element space truss. In these examples, damage is detected for several scenarios in two states: using the no noise responses and using the noisy responses. The results show that the precision and efficiency of the proposed method are appropriate in structural damage detection.

A comparative study on different walking load models

  • Wang, Jinping;Chen, Jun
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.847-856
    • /
    • 2017
  • Excessive vibrations can occur in long-span structures such as floors or footbridges due to occupant?s daily activity like walking and cause a so-called vibration serviceability issue. Since 1970s, researchers have proposed many human walking load models, and some of them have even been adopted by major design guidelines. Despite their wide applications in structural vibration serviceability problems, differences between these models in predicting structural responses are not clear. This paper collects 19 popular walking load models and compares their effects on structure?s responses when subjected to the human walking loads. Model parameters are first compared among all these models including orders of components, dynamic load factors, phase angles and function forms. The responses of a single-degree-of-freedom system with various natural frequencies to the 19 load models are then calculated and compared in terms of peak values and root mean square values. Case studies on simulated structures and an existing long-span floor are further presented. Comparisons between predicted responses, guideline requirements and field measurements are conducted. All the results demonstrate that the differences among all the models are significant, indicating that in a practical design, choosing a proper walking load model is crucial for the structure?s vibration serviceability assessment.

풍하중을 받는 구조물의 풍방향 동적응답해석 (Dynamic Alongwind Response of the Structure under the Wind Load)

  • 도혜경;권택진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.451-458
    • /
    • 2001
  • The structural dynamic responses by wind load consist of alongwind, acrosswind and torsional behavior. Specially, dynamic alongwind response can be obtained from theoretical approach presented by Davenport, Vellozzi and Cohen. Generally the structural dynamic alongwind response can be obtained using the approximate analysis, under the condition that only the first mode shape of the structure is considered and the mode shape is assumed to be a linear function. In this paper, the dynamic alongwind responses are performed by using spectrum of longitudinal velocity fluctuations presented by Davenport and Kaimal, respectively.

  • PDF

트윈 빌딩의 공력 특성이 풍응답에 미치는 영향 평가 (Impact of the Aerodynamic Characteristics of Twin Buildings on Wind Responses)

  • 김법렬
    • 한국전산구조공학회논문집
    • /
    • 제33권1호
    • /
    • pp.1-7
    • /
    • 2020
  • 트윈 빌딩의 풍응답은 풍하중의 공력 특성과 트윈 빌딩 구조 시스템의 동적 특성에 영향을 받는다. 본 논문에서는 트윈 빌딩의 두 빌딩의 간격이 다른 두 경우에 대해서 풍응답에 영향을 주는 풍압의 특성을 풍동 실험과 적합 직교 분해 기법을 이용해 파악하고, 3차원 구조 시스템 모델링을 통해 동특성을 파악하였다. 그리고 이중 모달 변환 기법을 이용해서 각 풍압의 특성과 구조물의 동특성이 풍응답에 미치는 영향을 파악하였다. 적합 직교 분해 기법을 통해서 채널링과 와류 효과에 대해서 파악할 수 있었다. 풍 직각 방향의 풍하중은 두 빌딩의 간격에 영향을 많이 받았으며, 풍 방향의 풍하중은 간격에 영향을 적게 받았다. 마찬가지로, 이중 모달 변환 기법에서 교차 참여 계수는 풍 직각 방향에서는 두 빌딩의 간격에 따라 크게 달라진 반면, 풍 방향은 영향이 적었다. 이에 따라 두 빌딩의 간격이 풍 방향의 풍응답 보다 풍 직각 뱡향의 풍응답에 중요한 역할을 하는 것을 알 수 있었다.