• 제목/요약/키워드: Structural Responses

Search Result 2,421, Processing Time 0.022 seconds

Examination of the structural design for SWATH ship (최소 선면쌍동선 구조설계에 대한 고찰)

  • 박명규;신영식
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.1 no.1
    • /
    • pp.95-106
    • /
    • 1995
  • The small-waterplane-area-twin-hull(SWATH) ship has been recognized as a promising high performance ship because of her superior seakeeping characteristics and large deck area for various operations compared to the conventional monohull ship. significant advances in analytical technics for the prediction of the ship motions, wave loads and structural responses, structural fatigue and its prediction, and hull vibration for ship motions, wave loads and structural responses, structural fatigue and its prediction, and hull vibration for SWATH ship have been much developed during the last twenty years. Based on these developments in technology an integrated computational procedures for prediction wave loads and structural responses can be used to get a accurate results. But the major problem of SWATH ship's structural design is the accurate prediction of structural responses by the maximum critical loads likely to be experienced during the life of SWATH. To get a easier and safer computational procedures and the analytical approach for determining the accurate structural responses, a case study has been presented through the project experienced.

  • PDF

A Proposal of Model Updating Method for Steel Frame Using Global/Local Responses (전역적/국부 응답을 이용한 철골조의 모델 업데이팅 기법 제안)

  • Oh, Byung-Kwan;Choi, Se-Woon;Kim, Yousok;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.401-408
    • /
    • 2015
  • Conventional model updating methods for the structures have used global structural responses which are modal parameters obtained through vibration measurements. Although models updated by modal parameters estimate global structural responses accurately, they have difficulties to predict local responses for safety assesment of structural members. The safety of structural members in the structures has been evaluated through the stress estimation based on strain measurements. Thus, this study additionally uses measured strain responses of structural members to perform model updating besides modal parameters. In the proposed method, the objective functions are set to the differences of the global and local responses obtained from updated model and measurement and those functions are minimized by NSGA-II, one of the multi-objective optimization techniques. The strain responses predicted from updated model are used for safety assessment of the steel frame structures. The proposed method are verified by numerical and experimental studies through the impact hammer tests for a steel frame specimen.

Quasi real-time and continuous non-stationary strain estimation in bottom-fixed offshore structures by multimetric data fusion

  • Palanisamy, Rajendra P.;Jung, Byung-Jin;Sim, Sung-Han;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2019
  • Offshore structures are generally exposed to harsh environments such as strong tidal currents and wind loadings. Monitoring the structural soundness and integrity of offshore structures is crucial to prevent catastrophic collapses and to prolong their lifetime; however, it is intrinsically challenging because of the difficulties in accessing the critical structural members that are located under water for installing and repairing sensors and data acquisition systems. Virtual sensing technologies have the potential to alleviate such difficulties by estimating the unmeasured structural responses at the desired locations using other measured responses. Despite the usefulness of virtual sensing, its performance and applicability to the structural health monitoring of offshore structures have not been fully studied to date. This study investigates the use of virtual sensing of offshore structures. A Kalman filter based virtual sensing algorithm is developed to estimate responses at the location of interest. Further, this algorithm performs a multi-sensor data fusion to improve the estimation accuracy under non-stationary tidal loading. Numerical analysis and laboratory experiments are conducted to verify the performance of the virtual sensing strategy using a bottom-fixed offshore structural model. Numerical and experimental results show that the unmeasured responses can be reasonably recovered from the measured responses.

Study of seismic performance of super long-span partially earth-anchored cable-stayed bridges

  • Zhang, Xin-Jun;Yu, Cong;Zhao, Jun-Jie
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.99-111
    • /
    • 2019
  • To investigate the seismic performance of long-span partially earth-anchored cable-stayed bridge, a super long-span partially earth-anchored cable-stayed bridge scheme with main span of 1400m is taken as example, structural response of the bridge under E1 seismic action is investigated numerically by the multimode seismic response spectrum and time-history analysis, seismic behavior and also the effect of structural geometric nonlinearity on the seismic responses of super long-span partially earth-anchored cable-stayed bridges are revealed. The seismic responses are also compared to those of a fully self-anchored cable-stayed bridge with the same main span. The effects of structural parameters including the earth-anchored girder length, the girder width, the girder depth, the tower height to span ratio, the inclination of earth-anchored cables, the installation of auxiliary piers in the side spans and the connection between tower and girder on the seismic responses of partially ground-anchored cable-stayed bridges are investigated, and their reasonable values are also discussed in combination with static performance and structural stability. The results show that the horizontal seismic excitation produces significant seismic responses of the girder and tower, the seismic responses of the towers are greater than those of the girder, and thus the tower becomes the key structural member of seismic design, and more attentions should be paid to seismic design of these sections including the tower bottom, the tower and girder at the junction of tower and girder, the girder at the auxiliary piers in side spans; structural geometric nonlinearity has significant influence on the seismic responses of the bridge, and thus the nonlinear time history analysis is proposed to predict the seismic responses of super long-span partially earth-anchored cable-stayed bridges; as compared to the fully self-anchored cable-stayed bridge with the same main span, several stay cables in the side spans are changed to be earth-anchored, structural stiffness and natural frequency are both increased, the seismic responses of the towers and the longitudinal displacement of the girder are significantly reduced, structural seismic performance is improved, and therefore the partially earth-anchored cable-stayed bridge provides an ideal structural solution for super long-span cable-stayed bridges with kilometer-scale main span; under the case that the ratio of earth-anchored girder length to span is about 0.3, the wider and higher girder is employed, the tower height-to-span ratio is about 0.2, the larger inclination is set for the earth-anchored cables, 1 to 2 auxiliary piers are installed in each of the side spans and the fully floating system is employed, better overall structural performance is achieved for long-span partially earth-anchored cable-stayed bridges.

Dynamic characteristics monitoring of a 421-m-tall skyscraper during Typhoon Muifa using smartphone

  • Kang Zhou;Sha Bao;Lun-Hai Zhi;Feng Hu;Kang Xu;Zhen-Ru Shu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.451-460
    • /
    • 2023
  • Recently, the use of smartphones for structural health monitoring in civil engineering has drawn increasing attention due to their rapid development and popularization. In this study, the structural responses and dynamic characteristics of a 421-m-tall skyscraper during the landfall of Typhoon Muifa are monitored using an iPhone 13. The measured building acceleration responses are first corrected by the resampling technique since the sampling rate of smartphone-based measurement is unstable. Then, based on the corrected building acceleration, the wind-induced responses (i.e., along-wind and across-wind responses) are investigated and the serviceability performance of the skyscraper is assessed. Next, the amplitude-dependency and time-varying structural dynamic characteristics of the monitored supertall building during Typhoon Muifa are investigated by employing the random decrement technique and Bayesian spectral density approach. Moreover, the estimated results during Muifa are further compared with those of previous studies on the monitored building to discuss its long-term time-varying structural dynamic characteristics. The paper aims to demonstrate the applicability and effectiveness of smartphones for structural health monitoring of high-rise buildings.

Locating and identifying model-free structural nonlinearities and systems using incomplete measured structural responses

  • Liu, Lijun;Lei, Ying;He, Mingyu
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.409-424
    • /
    • 2015
  • Structural nonlinearity is a common phenomenon encountered in engineering structures under severe dynamic loading. It is necessary to localize and identify structural nonlinearities using structural dynamic measurements for damage detection and performance evaluation of structures. However, identification of nonlinear structural systems is a difficult task, especially when proper mathematical models for structural nonlinear behaviors are not available. In prior studies on nonparametric identification of nonlinear structures, the locations of structural nonlinearities are usually assumed known and all structural responses are measured. In this paper, an identification algorithm is proposed for locating and identifying model-free structural nonlinearities and systems using incomplete measurements of structural responses. First, equivalent linear structural systems are established and identified by the extended Kalman filter (EKF). The locations of structural nonlinearities are identified. Then, the model-free structural nonlinear restoring forces are approximated by power series polynomial models. The unscented Kalman filter (UKF) is utilized to identify structural nonlinear restoring forces and structural systems. Both numerical simulation examples and experimental test of a multi-story shear building with a MR damper are used to validate the proposed algorithm.

Detection and parametric identification of structural nonlinear restoring forces from partial measurements of structural responses

  • Lei, Ying;Hua, Wei;Luo, Sujuan;He, Mingyu
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.291-304
    • /
    • 2015
  • Compared with the identification of linear structures, it is more challenging to conduct identification of nonlinear structure systems, especially when the locations of structural nonlinearities are not clear in structural systems. Moreover, it is highly desirable to develop methods of parametric identification using partial measurements of structural responses for practical application. To cope with these issues, an identification method is proposed in this paper for the detection and parametric identification of structural nonlinear restoring forces using only partial measurements of structural responses. First, an equivalent linear structural system is proposed for a nonlinear structure and the locations of structural nonlinearities are detected. Then, the parameters of structural nonlinear restoring forces at the locations of identified structural nonlinearities together with the linear part structural parameters are identified by the extended Kalman filter. The proposed method simplifies the identification of nonlinear structures. Numerical examples of the identification of two nonlinear multi-story shear frames and a planar nonlinear truss with different nonlinear models and locations are used to validate the proposed method.

Analysis ana Correction of Experimental Errors in Pseudodynamic Test (유사동적실험 오차의 분석 및 보정)

  • 김남식;이상순;정우정;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.95-101
    • /
    • 1992
  • The Pseudodynamic test is a new experimental technique for simulating the earthquake response of structures or structural components in the time domain. It is especially efficient for testing structures that are too large, heavy or strong to be tested on a shaking table. But the obtained responses in the Pseudodynamic test are distorted by the experimental errors inevitably during control and measurement procedures. The studies are to investigate the effects of the experimental errors on the Pseudodynamic responses and apply a correction method to the Pseudodynamic testing algorithm. It is shown that the corrected responses using the Equivalent Energy Compensation Method are in a good correlation with the theoretical ones. Thus, the corrected Pseudodynamic responses could be reliable for evaluating the seismic performance of structural systems.

  • PDF

Wind-induced lateral-torsional coupled responses of tall buildings

  • Wu, J.R.;Li, Q.S.;Tuan, Alex Y.
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.153-178
    • /
    • 2008
  • Based on the empirical formulas for power spectra of generalized modal forces and local fluctuating wind forces in across-wind and torsional directions, the wind-induced lateral-torsional coupled response analysis of a representative rectangular tall building was conducted by setting various parameters such as eccentricities in centers of mass and/or rigidity and considering different torsional to lateral stiffness ratios. The eccentricity effects on the lateral-torsional coupled responses of the tall building were studied comprehensively by structural dynamic analysis. Extensive computational results indicated that the torsional responses at the geometric center of the building may be significantly affected by the eccentricities in the centers of mass and/or rigidity. Covariance responses were found to be in the same order of magnitude as the along-wind or across-wind responses in many eccentricity cases, suggesting that the lateral-torsional coupled effects on the overall wind-induced responses can not be neglected for such situations. The calculated results also demonstrated that the torsional motion contributed significantly to the total responses of rectangular tall buildings with mass and/or rigidity eccentricities. It was shown through this study that the framework presented in this paper provides a useful tool to evaluate the wind-induced lateral-torsional coupled responses of rectangular buildings, which will enable structural engineers in the preliminary design stages to assess the serviceability of tall buildings, potential structural vibration problems and the need for a detailed wind tunnel test.

Damage identification of vehicle-track coupling system from dynamic responses of moving vehicles

  • Zhu, Hong-Ping;Ye, Ling;Weng, Shun;Tian, Wei
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.677-686
    • /
    • 2018
  • The structural responses are often used to identify the structural local damages. However, it is usually difficult to gain the responses of the track, as the sensors cannot be installed on the track directly. The vehicles running on a track excite track vibration and can also serve as response receivers because the vehicle dynamic response contains the vibration information of the track. A damage identification method using the vehicle responses and sensitivity analysis is proposed for the vehicle-track coupling system in this paper. Different from most damage identification methods of vehicle-track coupling system, which require the structural responses, only the vehicle responses are required in the proposed method. The local damages are identified by a sensitivity-based model updating process. In the vehicle-track coupling system, the track is modeled as a discrete point supported Euler-Bernoulli beam, and two vehicle models are proposed to investigate the accuracy and efficiency of damage identification. The measured track irregularity is considered in the calculation of vehicle dynamic responses. The measurement noises are also considered to study their effects to the damage identification results. The identified results demonstrate that the proposed method is capable to identify the local damages of the track accurately in different noise levels with only the vehicle responses.