• Title/Summary/Keyword: Structural Model Test

Search Result 2,456, Processing Time 0.027 seconds

Pseudo-dynamic test of the steel frame - Shear wall with prefabricated floor structure

  • Han, Chun;Li, Qingning;Jiang, Weishan;Yin, Junhong;Yan, Lei
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.431-445
    • /
    • 2016
  • Seismic behavior of new composite structural system with a fabricated floor was studied. A two-bay and three-story structural model with the scale ratio of 1/4 was consequently designed. Based on the proposed model, multiple factors including energy dissipation capacity, stiffness degradation and deformation performance were analyzed through equivalent single degree of freedom pseudo-dynamic test with different earthquake levels. The results show that, structural integrity as well as the effective transmission of the horizontal force can be ensured by additional X bracing at the bottom of the rigidity of the floor without concrete topping. It is proved that the cast-in-place floor in areas with high seismic intensity can be replaced by the prefabricated floor without pouring surface layer. The results provide a reliable theoretical basis for the seismic design of the similar structural systems in engineering application.

A Comparative Analysis of Existing Channel-Type Lining Board and New-Type lining Board Models (기존 채널형 복공판과 새로운 복공판 모델에 관한 비교분석 연구)

  • Kim Doo-Hwan;Kim Young-Sei
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.78-83
    • /
    • 2004
  • The channel-type lining board that partial welded on many partition frames is used to normal servicing lining board type. On this study is to investigate existing channel-type lining board's capacity by using the static loading test. From this study, to develop new-type lining board which reflect well cross section area and sectional modulus of existing channel-type lining board. Six types FEM model are adopted. The accumulated test results of stress conditions and deflections by section shapes will be used to analyzed the relation between the capacity and the section shape. With the comparing the results of static loading test and FEM analysis.

A Structural Equation Model Explaining Contraception Behaviors of Married Korean Women (기혼여성의 피임행위에 관한 설명모형)

  • Kim, Mi-Jong
    • Women's Health Nursing
    • /
    • v.7 no.2
    • /
    • pp.141-156
    • /
    • 2001
  • The purpose of this study was to develop and test the structural model of a contraceptive behavior in Married Korean women. A hypothesis model was constructed on the basis of the health belief model, the theory of planned behavior and extensive literature review of contraception. The model was built by seven constructs. Four exogeneous variables included in the model were consisted of the contraceptive knowledges, the perceived threats, the sexual autonomy and the communication within a couple. Four endogenous variables were consisted of the attitudes toward contraception, the perceived control, the ability to plan a intercourse and the contraceptive behaviors. Empirical data for testing the hypothetical model were collected by the self report questionnaires from 243 Korean married women. The questionnaires used in this study were developed by this researcher and their Cronbach's alpha scores were ranged from .60 to .88. The collected data were analyzed by SPSS program(ver. 8.0) for descriptive statistical analysis and LISREL program(ver. 8.12a) for covariance structural analysis. On the basis of this results, it could be suggested that contraceptive behaviors be greatly affected by the perceived threats, the communications within couple, the attitudes toward contraception and the perceived control. Finally this model would be useful for the practice, theory and research of nursing.

  • PDF

Structural Dynamic Modification of Fixture by Antiresonance Frequency Analysis in Environmental Vibration Test Control (환경진동시험 제어에서 반공진 진동수해석에 의한 치구의 구조변경설계)

  • 김준엽;정의봉
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.555-563
    • /
    • 1995
  • This paper proposes the method of antiresonance frequency analysis of multi-input multi-output system. The structural dynamic modification techniques by antiresonance frequency analysis are also applied to reduce the undertest at specimen attachment points on the fixture in environmental vibration test, which is resulted from the inconsistency of antiresonance frequencies at any specified points. Several computer simulations show that the proposed method can remove the undertest problem which is not removed in conventional vibration test control. And the effectiveness of the method is verified with the impact hammer excitation of aluminium fixture model.

  • PDF

Carbonation depth estimation in reinforced concrete structures using revised empirical model and oxygen permeability index

  • Chandra Harshitha;Bhaskar Sangoju;Ramesh Gopal
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.241-252
    • /
    • 2023
  • Corrosion of rebar is one of the major deteriorating mechanisms that affect the durability of reinforced concrete (RC) structures. The increase in CO2 concentration in the atmosphere leads to early carbonation and deterioration due to corrosion in RC structures. In the present study, an attempt has been made to modify the existing carbonation depth prediction empirical model. The modified empirical model is verified from the carbonation data collected from selected RC structures of CSIR-SERC campus, Chennai and carbonation data available from the reported literature on in-situ RC structures. Attempt also made to study the carbonation depth in the laboratory specimens using oxygen permeability index (OPI) test. The carbonation depth measured from RC structures and laboratory specimens are compared with estimated carbonation depth obtained from OPI test data. The modified empirical model shows good correlation with measured carbonation depth from the identified RC structures and the reported RC structures from the literature. The carbonation depth estimated from OPI values for both in-situ and laboratory specimens show lesser percentage of error compared to measured carbonation depth. From the present investigation it can be said that the OPI test is the suitable test method for both new and existing RC structures and laboratory RC specimens.

Experimental Study of the Seismic Performance of CJS Hybrid Structural Systems Connected to the CFT Column (CFT와 합성보로 이루어진 CJS합성구조시스템의 내진성능 실험 연구)

  • Lim, Chang Gue;Shin, Jiuk;Moon, A Hae;Kim, Yong Nam;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.83-93
    • /
    • 2022
  • In this study, to verify the structural performance of the Composite Joint System (CJS) hybrid structural model, a cyclic load test was performed and evaluated and verified through the test. To verify the structural performance of the CJS hybrid structural systems' joint and evaluate the seismic performance, four three-dimensional real-size specimens were developed with three internal beam-column specimens and one external beam-column specimen. The three interior column specimens were classified by different methods of joining the upper column and lower column, and the same bonding method as the primary specimen was used for the exterior column. The structural performances in terms of drift, strength, and energy dissipation capacity were analyzed and compared based on the experimental results. From the displacement-based loading experiment, all specimens showed a lateral drift of 4.0% without any significant strength drop and stable energy dissipation capacity.

Modal Test and Finite Element Model Update of Aircraft with High Aspect Ratio Wings (고세장비 항공기의 모드 시험 및 동특성 유한요소모델 개선)

  • Kim, Sang-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.480-488
    • /
    • 2012
  • The aircrafts with high aspect ratio wings made by a composite material have been developed, which enable high energy efficiency and long-term flight by reducing air resistance and structural weight. However, they have difficulties in securing the aeroelastic stability such as the flutter because of their long and flexible wings. The flutter is unstable self-excited-vibration caused by interaction between the structural dynamics and the aerodynamics. It should be verified analytically prior to first flight test that the flutter does not happen in the range of flight mission. Normally, the finite element model is used for the flutter analysis. So it is important to construct the finite element model representing dynamic characteristics similar to those of a real aircraft. Accordingly, in this research, to acquire dynamic characteristics experimentally the modal test of the aircraft with high aspect ratio composite wings was conducted. And then the modal parameters from the finite element analysis(FEA) were compared with those from the modal test. To make analysis results closer to test results, the finite element model was updated by means of the sensitivity analysis on variables and the optimization. Finally, it was proved that the updated finite element model is reliable as compared with the results of the modal test.

Current Studies to Estimate the Economic Values of Welfare-endowed Animal Products (동물복지형 축산물의 경제적 가치추정에 관한 연구 동향)

  • Jung, Yun-Pil;Roh, Sung-Hoon;Ohh, Sang-Jip;Lee, Jong-In
    • Journal of Animal Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.29-40
    • /
    • 2010
  • The purpose of the study is to review current studies for economic values on livestock products produced by animal welfare. In order to review the topic, published research papers and reports were reviewed in the world. As the result of the study, the studies for the topic are not researched actively. The main ideas for the studies were consumer survey on meats and egg. Data were questionnaire, Lexis-Nexis databases, consumptions and prices on meats, auction data. Tools for analyses were Random parameters logit and latent class model, WTP analysis, Roterdam model, Pearson's Chi test, Mann-Whitney V-test, Kruskal-Wallis test, structural equation model, regression model, Target-costing, and conjoint analysis.

Experimental investigation of vortex-induced aeroelastic effects on a square cylinder in uniform flow

  • Huang, Dongmei;Wu, Teng;He, Shiqing
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.37-54
    • /
    • 2020
  • To investigate the motion-induced aeroelastic effects (or aerodynamic feedback effects) on a square cylinder in uniform flow, a series of wind tunnel tests involving the pressure measurement of a rigid model (RM) and simultaneous measurement of the pressure and vibration of an aeroelastic model (AM) have been systematically carried out. More specifically, the aerodynamic feedback effects on the structural responses, on the mean and root-mean-square wind pressures, on the power spectra and coherence functions of wind pressures at selected locations, and on the aerodynamic forces were investigated. The results indicated the vibration in the lock-in range made the shedding vortex more coherent and better organized, and hence presented unfavorable wind-induced effects on the structure. Whereas the vibration in the non-lock-in range generally showed insignificant effects on the flow structures surrounding the square cylinder.

Formulation of Cyclic Plasticity Model and FE Analysis for SM490 TMC (SM490 TMC 강재의 반복소성모델의 정식화 및 유한요소해석)

  • 장갑철;장경호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.84-89
    • /
    • 2004
  • In this paper, cyclic plasticity model of SM490 TMC was formulated by basing on monotonic loading test and cyclic loading test. For exact description of cyclic performance and plastic deformation capacity of steel member using SM490 TMC, formulated cyclic plasticity model and finite deformation theory were applied to 3-dimensional elastic-plastic FE analysis. Cyclic plastic behavior of pipe-section steel column using SM490 TMC was clarified by carrying out numerical analysis. Also, in order to clarifying seismic performance of pipe-section steel column using SM490 TMC, analysis results were compared with analysis results of pipe-section steel column using SM490. A comparison of analysis results shows that SM490 TMC pipe-section steel column has a better cyclic performance for strength and energy dissipation than SM490 pipe-section steel column under cyclic loading

  • PDF