• 제목/요약/키워드: Structural Model Analysis

검색결과 7,532건 처리시간 0.032초

유전자 알고리즘을 이용한 모드기반 교량의 해석모델개선 (Modal based Structural Model Modification Using Genetic Algorithm)

  • 윤정방;이종재;이정석;전귀현;이진학
    • 한국전산구조공학회논문집
    • /
    • 제17권4호
    • /
    • pp.389-403
    • /
    • 2004
  • 이 연구에서는 교량의 모드자료를 이용한 구조해석모델의 개선에 관하여 연구하였다. 교량의 초기해석모델은 도면 및 현장조사결과를 바탕으로 작성되므로, 시간에 따라 손실된 강성의 영향 및 경계조건 등을 합리적으로 반영하기 어려우며, 따라서 구조물에 대한 정적 혹은 동적실험을 수행하고, 그 결과를 반영하여 해석모델을 개선하는 것이 바람직하다. 이 연구에서는 구조물의 고유주파수 및 모드형상 등의 모드특성을 바탕으로 추계론적 최적화 기법인 유전자 알고리즘을 이용하여 해석모델을 개선하고자 하였다. 임진강교 및 행주대교에 대한 동적실험 자료를 이용하여 교량의 모드특성을 추정하였으며, 추정된 모드특성을 바탕으로 유전자 알고리즘을 이용하여 수치해석모델을 개선하였다. 개선된 모델을 사용하여 해석한 결과, 초기해석모델에 의한 해석결과보다 실험으로 추정한 모드특성에 가까움을 확인하였고, 이로부터 개선모델의 합리성을 검증하였다.

4인승 선미익기 구조해석 (Structural Analysis for 4-Seater Canard Airplane)

  • 김성준;심재열
    • 항공우주기술
    • /
    • 제6권2호
    • /
    • pp.35-39
    • /
    • 2007
  • 본 논문에서는 4인승 선미익 항공기에 대한 구조해석 절차와 전기체 시험결과를 소개하였다. 전기체 유한요소모델 구축은 항공기 구조해석 시 중요한 업무이며 구조적 안전성에 직접적인 영향을 미치게 된다. 구축된 유한요소모델은 전기체 시험결과를 이용하여 정밀하게 보정된다. 구조해석 결과를 이용하여 5가지의 설계제한하중 시험조건과 11가지의 설계 극한하중 시험조건을 결정하였다. 소개된 절차를 이용하여 4인승 선미익 항공기의 구조적 안전성을 성공적으로 확보하였다.

  • PDF

A Study on the Structural Relationship between Authenticity of Sportswear Brand Corporate, Brand Image, Brand Attitude, and Premium Payment Intention

  • Jeon, Yong-Bae;Kim, Mi-Jeong
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.155-162
    • /
    • 2022
  • The purpose of this study is to conduct an empirical study on brand authenticity targeting sportswear brand consumers. Through this, we intend to provide the accumulation and implications of authenticity research. For the research model, first, the authenticity of sportswear brand companies was selected as an independent variable. Brand image and brand attitude were selected as the next parameters. Finally, the dependent variable was the intention to pay the premium. Structural equation model analysis was conducted for the structural relationship between these variables. The subjects of this study are consumers who have purchased sportswear brands within the past year. Convenience sampling was used for the sample survey, and 262 people were finally selected as valid samples. The survey was conducted as a non-face-to-face online survey due to the COVID-19 infection. For data processing, frequency analysis was conducted using SPSS 23 to identify the individual characteristics of the survey subjects. In addition, exploratory factor analysis and reliability analysis were performed to refine the scale of the survey tool. Next, using AMOS 21, confirmatory factor analysis and correlation analysis were conducted to verify the measurement model. In addition, structural equation model analysis was conducted to verify the hypothesis. As a result of the analysis, all six hypotheses selected from the research model were adopted.

COST PERFORMANCE PREDICTION FOR INTERNATIONAL CONSTRUCTION PROJECTS USING MULTIPLE REGRESSION ANALYSIS AND STRUCTURAL EQUATION MODEL: A COMPARATIVE STUDY

  • D.Y. Kim;S.H. Han;H. Kim;H. Park
    • 국제학술발표논문집
    • /
    • The 2th International Conference on Construction Engineering and Project Management
    • /
    • pp.653-661
    • /
    • 2007
  • Overseas construction projects tend to be more complex than domestic projects, being exposed to more external risks, such as politics, economy, society, and culture, as well as more internal risks from the project itself. It is crucial to have an early understanding of the project condition, in order to be well prepared in various phases of the project. This study compares a structural equation model and multiple regression analysis, in their capacity to predict cost performance of international construction projects. The structural equation model shows a more accurate prediction of cost performance than does regression analysis, due to its intrinsic capability of considering various cost factors in a systematic way.

  • PDF

비점성 저차모델링 기법을 활용한 비선형 플러터 해석 (NONLINEAR FLUTTER ANALYSIS USING INVISCID REDUCED ORDER MODELING TECHNIQUE)

  • 김요한;김동현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.458-464
    • /
    • 2011
  • A new method identifies coupled fluid-structure system with a reduced set of state variables is presented. Assuming that the structural model is known a priori either from an analysis or a test and using linear transformations between structural and aeroelastic states, it is possible to deduce aerodynamic information from sampled time histories of the aeroelastic system. More specifically given a finite set of structural modes the method extracts generalized aerodynamic force matrix corresponding to these mode shapes. Once the aerodynamic forces are known, an aeroelastic reduced-order model can be constructed in discrete-time, state-space format by coupling the structural model and the aerodynamic system. The resulting reduced-order model is suitable for constant Mach, varying density analysis.

  • PDF

중소형항만의 화주유인증대를 위한 모형개발에 관한 연구 - 군산항을 중심으로- (Model Development for Increasing Shippers′ Attraction of Small and Medium Ports: With the Focus on Kunsan Ports)

  • 여기태;박은보;강래영
    • 한국항만경제학회지
    • /
    • 제20권1호
    • /
    • pp.141-151
    • /
    • 2004
  • Although the small and medium ports are actually competing with various strategies, the definition and structural understanding of small and medium ports are not known very much. Therefore this study has launched from this fact, and has the objective of obtaining the structural model for increasing shippers' attraction of small and medium ports. The process began by abstracting the components that composed the success factors through recent research, and grouping it by FA(Factor Analysis) method. Also, by using the FSM(Fuzzy Structural Modeling) method to understand the structure of the grouped components, and the structural model for increasing shippers' attraction of small and medium ports was able to obtain as the result. When analyzing the obtained structural model, easiness of shipment, connection to hubport and efficiency of hinterland network came out to be the most important component groups.

  • PDF

Analytical study on hydrodynamic motions and structural behaviors of hybrid floating structure

  • Jeong, Youn-Ju;Lee, Du-Ho;Park, Min-Su;You, Young-Jun
    • Ocean Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.35-53
    • /
    • 2013
  • In this study, a hybrid floating structure with cylinder was introduced to reduce the hydrodynamic motions of the pontoon type. The hybrid floating structure is composed of cylinders and semi-opened side sections to penetrate the wave impact energy. In order to exactly investigate the hydrodynamic motions and structural behavior of the hybrid floating structure under the wave loadings, integrated analysis of hydrodynamic and structural behavior were carried out on the hybrid floating structure. Firstly, the hydrodynamic analyses were performed on the hybrid and pontoon models. Then, the wave-induced hydrodynamic pressures resulting from hydrodynamic analysis were directly mapped to the structural analysis model. And, finally, the structural analyses were carried out on the hybrid and pontoon models. As a result of this study, it was learned that the hybrid model of this study was showed to have more favorable hydrodynamic motions than the pontoon model. The surge motion was indicated even smaller motion at all over wave periods from 4.0 to 10.0 sec, and the heave and pitch motions indicated smaller motions beyond its wave period of 6.5 sec. However, the hybrid model was shown more unfavorable structural behavior than the pontoon model. High concentrated stress occurred at the bottom slab of the bow and stern part where the cylinder wall was connected to the bottom slab. Also, the hybrid model behaved with the elastic body motion due to weak stiffness of floating body and caused a large stress variation at the pure slab section between the cylinder walls. Hence, in order to overcome these problems, some alternatives which could be easily obtained from the simple modification of structural details were proposed.

Developing efficient model updating approaches for different structural complexity - an ensemble learning and uncertainty quantifications

  • Lin, Guangwei;Zhang, Yi;Liao, Qinzhuo
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.321-336
    • /
    • 2022
  • Model uncertainty is a key factor that could influence the accuracy and reliability of numerical model-based analysis. It is necessary to acquire an appropriate updating approach which could search and determine the realistic model parameter values from measurements. In this paper, the Bayesian model updating theory combined with the transitional Markov chain Monte Carlo (TMCMC) method and K-means cluster analysis is utilized in the updating of the structural model parameters. Kriging and polynomial chaos expansion (PCE) are employed to generate surrogate models to reduce the computational burden in TMCMC. The selected updating approaches are applied to three structural examples with different complexity, including a two-storey frame, a ten-storey frame, and the national stadium model. These models stand for the low-dimensional linear model, the high-dimensional linear model, and the nonlinear model, respectively. The performances of updating in these three models are assessed in terms of the prediction uncertainty, numerical efforts, and prior information. This study also investigates the updating scenarios using the analytical approach and surrogate models. The uncertainty quantification in the Bayesian approach is further discussed to verify the validity and accuracy of the surrogate models. Finally, the advantages and limitations of the surrogate model-based updating approaches are discussed for different structural complexity. The possibility of utilizing the boosting algorithm as an ensemble learning method for improving the surrogate models is also presented.

Evaluation of numerical procedures to determine seismic response of structures under influence of soil-structure interaction

  • Tabatabaiefar, Hamid Reza;Fatahi, Behzad;Ghabraie, Kazem;Zhou, Wan-Huan
    • Structural Engineering and Mechanics
    • /
    • 제56권1호
    • /
    • pp.27-47
    • /
    • 2015
  • In this study, the accuracy and reliability of fully nonlinear method against equivalent linear method for dynamic analysis of soil-structure interaction is investigated comparing the predicted results of both numerical procedures with the results of experimental shaking table tests. An enhanced numerical soil-structure model has been developed which treats the behaviour of the soil and the structure with equal rigour. The soil-structural model comprises a 15 storey structural model resting on a soft soil inside a laminar soil container. The structural model was analysed under three different conditions: (i) fixed base model performing conventional time history dynamic analysis, (ii) flexible base model (considering full soil-structure interaction) conducting equivalent linear dynamic analysis, and (iii) flexible base model performing fully nonlinear dynamic analysis. The results of the above mentioned three cases in terms of lateral storey deflections and inter-storey drifts are determined and compared with the experimental results of shaking table tests. Comparing the experimental results with the numerical analysis predictions, it is noted that equivalent linear method of dynamic analysis underestimates the inelastic seismic response of mid-rise moment resisting building frames resting on soft soils in comparison to the fully nonlinear dynamic analysis method. Thus, inelastic design procedure, using equivalent linear method, cannot adequately guarantee the structural safety for mid-rise building frames resting on soft soils. However, results obtained from the fully nonlinear method of analysis fit the experimental results reasonably well. Therefore, this method is recommended to be used by practicing engineers.

경영정보학 분야의 구조방정식모형 적용분석 : Lisrel과 PLS 방법을 중심으로 (The Structural Equation Modeling in MIS : The Perspectives of Lisrel and PLS Applications)

  • 김인재;민금영;심형섭
    • 한국IT서비스학회지
    • /
    • 제10권2호
    • /
    • pp.203-221
    • /
    • 2011
  • The purpose of this study is to investigate the applications of Structural Equation Modeling(SEM) into MIS area in recent years. Two methodologies, Lisrel and PLS, are adopted for the method comparison. A research model, based upon TAM(Technology Acceptance Model) is used for the analysis of the data set of a previous study. The research model includes six research variables that are composed of twenty-eight question items. 272 data are used for data analyses through Lisrel v.8.72 and Visual PLS v.1.04. This study shows the statistical results of Lisrel are the same to those of PLS. The contribution of this study can be suggested as the followings; (1) A theoretical comparison of two methodologies is shown, (2) A statistical analysis is done at a real-situated data set, and (3) Several implications are suggested.