• Title/Summary/Keyword: Structural Instability

Search Result 445, Processing Time 0.027 seconds

Auto-parametric resonance of framed structures under periodic excitations

  • Li, Yuchun;Gou, Hongliang;Zhang, Long;Chang, Chenyu
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.497-510
    • /
    • 2017
  • A framed structure may be composed of two sub-structures, which are linked by a hinged joint. One sub-structure is the primary system and the other is the secondary system. The primary system, which is subjected to the periodic external load, can give rise to an auto-parametric resonance of the second system. Considering the geometric-stiffness effect produced by the axially internal force, the element equation of motion is derived by the extended Hamilton's principle. The element equations are then assembled into the global non-homogeneous Mathieu-Hill equations. The Newmark's method is introduced to solve the time-history responses of the non-homogeneous Mathieu-Hill equations. The energy-growth exponent/coefficient (EGE/EGC) and a finite-time Lyapunov exponent (FLE) are proposed for determining the auto-parametric instability boundaries of the structural system. The auto-parametric instabilities are numerically analyzed for the two frames. The influence of relative stiffness between the primary and secondary systems on the auto-parametric instability boundaries is investigated. A phenomenon of the "auto-parametric internal resonance" (the auto-parametric resonance of the second system induced by a normal resonance of the primary system) is predicted through the two numerical examples. The risk of auto-parametric internal resonance is emphasized. An auto-parametric resonance experiment of a ${\Gamma}$-shaped frame is conducted for verifying the theoretical predictions and present calculation method.

Influence of the cylinder height on the elasto-plastic failure of locally supported cylinders

  • Jansseune, Arne;De Corte, Wouter;Vanlaere, Wesley;Van Impe, Rudy
    • Steel and Composite Structures
    • /
    • v.12 no.4
    • /
    • pp.291-302
    • /
    • 2012
  • Frequently, steel silos are supported by discrete supports or columns to permit easy access beneath the barrel. In such cases, large loads are transferred to the limited number of supports, causing locally high axial compressive stress concentrations in the shell wall above the supports. If not dealt with properly, these increased stresses will lead to premature failure of the silo due to local instability in the regions above the supports. Local stiffening near the supports is a way to improve the buckling resistance, as material is added in the region of elevated stresses, levelling these out to values found in uniformly supported silos. The aim of a study on the properties of local stiffening will then be to increase the failure load, governed by an interaction of plastic collapse and elastic instability, to that of a discrete supported silo. However, during the course of such a study it was found that, although the failure remains local, the cylinder height is also a parameter that influences the failure mechanism, a fact that is not properly taken into account in current design practice and codes. This paper describes the mechanism behind the effect of the cylinder height on the failure load, which is related to pre-buckling deformations of the shell structure. All results and conclusions are based on geometrically and materially non-linear finite element analyses.

Transonic buffet alleviation on 3D wings: wind tunnel tests and closed-loop control investigations

  • Lepage, Arnaud;Dandois, Julien;Geeraert, Arnaud;Molton, Pascal;Ternoy, Frederic;Dor, Jean Bernard;Coustols, Eric
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.145-167
    • /
    • 2017
  • The presented paper gives an overview of several projects addressing the experimental characterization and control of the buffet phenomenon on 3D turbulent wings in transonic flow conditions. This aerodynamic instability induces strong wall pressure fluctuations and therefore limits flight domain. Consequently, to enlarge the latter but also to provide more flexibility during the design phase, it is interesting to try to delay the buffet onset. This paper summarizes the main investigations leading to the achievement of open and closed-loop buffet control and its experimental demonstration. Several wind tunnel tests campaigns, performed on a 3D half wing/fuselage body, enabled to characterize the buffet aerodynamic instability and to study the efficiency of innovative fluidic control devices designed and manufactured by ONERA. The analysis of the open-loop databases demonstrated the effects on the usual buffet characteristics, especially on the shock location and the separation areas on the wing suction side. Using these results, a closed-loop control methodology based on a quasi-steady approach was defined and several architectures were tested for various parameters such as the input signal, the objective function, the tuning of the feedback gain. All closed-loop methods were implemented on a dSPACE device able to estimate in real time the fluidic actuators command calculated mainly from the unsteady pressure sensors data. The efficiency of delaying the buffet onset or limiting its effects was demonstrated using the quasi-steady closed-loop approach and tested in both research and industrial wind tunnel environments.

A Study on Subcritical Instability of Axisymmetric Supersonic inlet (축대칭 초음속 흡입구의 아임계 불안정성 연구)

  • Shin, Phil-Kwon;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.29-36
    • /
    • 2004
  • Supersonic inlet buzz can be defined as unstable subcritical operation associated with fluctuating internal pressures and a shock pattern oscillating about the inlet entrance. The flow pulsations could result in flameout in the combustor or even structural damage to the engine. An experimental study was conducted to investigate the phenomenon of supersonic inlet buzz on axisymmetric, external-compression inlet. An inlet model with a cowl lip diameter of 30mm was tested at a free stream Mach number of 2.0. Subcritical instability was investigated by considering the frequency of pressure pulsation and shock wave structure at the inlet entrance. The results obtained show that total pressure recovery ratios were varied from 0.42 to 0.78, and capture area ratio from 0.34 to 0.98. The frequency of the subcritical flow increased with decrease in capture area ratios. Frequency was measured at $224{\sim}240Hz$.

An Experimental Study on Flame Structure and Combustion Instability Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서 화염구조와 연소불안정 특성에 대한 실험적 연구)

  • Park, Sung-Soon;Kim, Min-Ki;Yoon, Ji-Su;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.26-34
    • /
    • 2011
  • The present work addresses structural characteristics of natural gas flames in a lean premixed swirl-stabilized combustor with an attention focused on the effect of the formation of recirculation zones on the combustion instability. It is known that the recirculation zone plays an important role in stabilizing a turbulent, premixed natural gas flames by providing a source of heat or radicals to the incoming premixed fuel and air. To improve our understanding of the role of recirculation zones, the flame structure was investigated for various mixture velocities, equivalence ratios and swirl numbers. The optically accessible combustor allowed for the application of laser diagnostics, and Particle Image Velocimetry(PIV) measurements was used to characterize the flame structure under both cold flow conditions and hot flow conditions. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The results indicates that the formation of recirculation zone is strongly related to the occurrence of thermo-acoustic instabilities.

On the local stability condition in the planar beam finite element

  • Planinc, Igor;Saje, Miran;Cas, Bojan
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.507-526
    • /
    • 2001
  • In standard finite element algorithms, the local stability conditions are not accounted for in the formulation of the tangent stiffness matrix. As a result, the loss of the local stability is not adequately related to the onset of the global instability. The phenomenon typically arises with material-type localizations, such as shear bands and plastic hinges. This paper addresses the problem in the context of the planar, finite-strain, rate-independent, materially non-linear beam theory, although the proposed technology is in principle not limited to beam structures. A weak formulation of Reissner's finite-strain beam theory is first presented, where the pseudocurvature of the deformed axis is the only unknown function. We further derive the local stability conditions for the large deformation case, and suggest various possible combinations of the interpolation and numerical integration schemes that trigger the simultaneous loss of the local and global instabilities of a statically determined beam. For practical applications, we advice on a procedure that uses a special numerical integration rule, where interpolation nodes and integration points are equal in number, but not in locations, except for the point of the local instability, where the interpolation node and the integration point coalesce. Provided that the point of instability is an end-point of the beam-a condition often met in engineering practice-the procedure simplifies substantially; one of such algorithms uses the combination of the Lagrangian interpolation and Lobatto's integration. The present paper uses the Galerkin finite element discretization, but a conceptually similar technology could be extended to other discretization methods.

An Experimental Study on Flame Structure and Combustion Instability Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서 화염구조와 연소불안정 특성에 대한 실험적 연구)

  • Park, Sung-Soon;Kim, Min-Ki;Yoon, Ji-Su;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.445-452
    • /
    • 2011
  • The present work addresses structural characteristics of natural gas flames in a lean premixed swirl-stabilized combustor with an attention focused on the effect of the formation of recirculation zones on the combustion instability. It is known that the recirculation zone plays an important role in stabilizing a turbulent, premixed natural gas flames by providing a source of heat or radicals to the incoming premixed fuel and air. To improve our understanding of the role of recirculation zones, the flame structure was investigated for various mixture velocities, equivalence ratios and swirl numbers. The optically accessible combustor allowed for the application of laser diagnostics, and Particle Image Velocimetry(PIV) measurements was used to characterize the flame structure under both cold flow conditions and hot flow conditions. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The results indicates that the formation of recirculation zone is strongly related to the occurrence of thermo-acoustic instabilities.

  • PDF

General inflation and bifurcation analysis of rubber balloons (고무풍선의 일반화 팽창 및 분기 해석)

  • Park, Moon Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.14-24
    • /
    • 2018
  • Several typical hyper-elastic constitutive models that encompass both conventional and advanced ones were investigated for the application of instability problems, including the biaxial tension of a rubber patch and inflation of spherical or cylindrical balloons. The material models included the neo-Hookean model, Mooney-Rivlin model, Gent model, Arruda-Boyce model, Fung model, and Pucci-Saccomandi model. Analyses can be done using membrane equations with particular strain energy density functions. Among the typical strain energy density functions, Kearsley's bifurcation for the Treloar's patch occurs only with the Mooney-Rivlin model. The inflation equation is so generalized that a spherical balloon and tube balloons can be taken into account. From the analyses, the critical material parameters and limit points were identified for material models in terms of the non-dimensional pressure and inflation volume ratio. The bifurcation was then identified and found for each material model of a balloon. When the finite element method was used for the structural instability problems of rubber-like materials, some careful treatments required could be suggested. Overall, care must be taken not only with the analysis technique, but also in selecting constitutive models, particularly the instabilities.

Stress wave propagation in 1-D and 2-D media using Smooth Particle Hydrodynamics method

  • Liu, Z.S.;Swaddiwudhipong, S.;Koh, C.G.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.455-472
    • /
    • 2002
  • The paper involves the study on the elastic and elasto-plastic stress wave propagation in the 1-D and 2-D solid media. The Smooth Particle Hydrodynamics equations governing the elastic and elasto-plastic large deformation dynamic response of solid structures are presented. The proposed additional stress points are introduced in the formulation to mitigate the tensile instability inherent in the SPH approach. Both incremental rate approach and leap-frog algorithm for time integration are introduced and the new solution algorithm is developed and implemented. Two examples on stress wave propagation in aluminium bar and 2-D elasto-plastic steel plate are included. Results from the proposed SPH approach are compared with available analytical values and finite element solutions. The comparison illustrates that the stress wave propagation problems can be effectively solved by the proposed SPH method. The study shows that the SPH simulation is a reliable and robust tool and can be used with confidence to treat transient dynamics such as linear and non-linear transient stress wave propagation problems.

Active control of a flexible structure with time delay

  • Cai, Guo-Ping;Yang, Simon X.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.191-207
    • /
    • 2005
  • Time delay exists inevitably in active control, which may not only degrade the system performance but also render instability to the dynamic system. In this paper, a novel active controller is developed to solve the time delay problem in flexible structures. By using the independent modal space control method, the differential equation of the controlled mode with time delay is obtained from the time-delay system dynamics. Then it is discretized and changed into a first-order difference equation without any explicit time delay by augmenting the state variables. The modal controller is derived based on the augmented system using the discrete variable structure control method. The switching surface is determined by minimizing a discrete quadratic performance index. The modal coordinate is extracted from sensor measurements and the actuator control force is converted from the modal one. Since the time delay is explicitly included throughout the entire controller design without any approximation, the system performance and stability are guaranteed. Numerical simulations show that the proposed controller is feasible and effective in active vibration control of dynamic systems with time delay. If the time delay is not explicitly included in the controller design, instability may occur.