• Title/Summary/Keyword: Structural Health Monitoring Technology

Search Result 354, Processing Time 0.022 seconds

Instrumentation on structural health monitoring systems to real world structures

  • Teng, Jun;Lu, Wei;Wen, Runfa;Zhang, Ting
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.151-167
    • /
    • 2015
  • Instrumentation on structural health monitoring system imposes critical issues for applying the structural monitoring system to real world structures, for which not only on the configuration and geometry, but also aesthetics on the system to be monitored should be considered. To illustrate this point, two real world structural health monitoring systems, the structural health monitoring system of Shenzhen Vanke Center and the structural health monitoring system of Shenzhen Bay Stadium in China, are presented in the paper. The instrumentation on structural health monitoring systems of real world structures is addressed by providing the description of the structure, the purpose of the structural health monitoring system implementation, as well as details of the system integration including the installations on the sensors and acquisition equipment and so on. In addition, an intelligent algorithm on stress identification using measurements from multi-region is presented in the paper. The stress identification method is deployed using the fuzzy pattern recognition and Dempster-Shafer evidence theory, where the measurements of limited strain sensors arranged on structure are the input data of the method. As results, at the critical parts of the structure, the stress distribution evaluated from the measurements has shown close correlation to the numerical simulation results on the steel roof of the Beijing National Aquatics Center in China. The research work in this paper can provide a reference for the design and implementation of both real world structural health monitoring systems and intelligent algorithm to identify stress distribution effectively.

Application of structural health monitoring in civil infrastructure

  • Feng, M.Q.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.469-482
    • /
    • 2009
  • The emerging sensor-based structural health monitoring (SHM) technology has a potential for cost-effective maintenance of aging civil infrastructure systems. The author proposes to integrate continuous and global monitoring using on-structure sensors with targeted local non-destructive evaluation (NDE). Significant technical challenges arise, however, from the lack of cost-effective sensors for monitoring spatially large structures, as well as reliable methods for interpreting sensor data into structural health conditions. This paper reviews recent efforts and advances made in addressing these challenges, with example sensor hardware and health monitoring software developed in the author's research center. The hardware includes a novel fiber optic accelerometer, a vision-based displacement sensor, a distributed strain sensor, and a microwave imaging NDE device. The health monitoring software includes a number of system identification methods such as the neural networks, extended Kalman filter, and nonlinear damping identificaiton based on structural dynamic response measurement. These methods have been experimentally validated through seismic shaking table tests of a realistic bridge model and tested in a number of instrumented bridges and buildings.

Reviews on innovations and applications in structural health monitoring for infrastructures

  • Li, Hong-Nan;Yi, Ting-Hua;Ren, Liang;Li, Dong-Sheng;Huo, Lin-Sheng
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.1-45
    • /
    • 2014
  • The developments and implementations of the structural health monitoring (SHM) system for large infrastructures have been gradually recognized by researchers, engineers and administrative authorities in the last decades. This paper summarizes an updated review on innovations and applications in SHM for infrastructures carried out by researchers at Dalian University of Technology. Invented sensors and data acquisition system are firstly briefly described. And then, some proposed theories and methods including the sensing technology, sensor placement method, signal processing and data fusion, system identification and damage detection are discussed in details. Following those, the activities on the standardization of SHM and several case applications on specific types of structure are reviewed. Finally, existing problems and promising research efforts in the field of SHM are given.

Building structural health monitoring using dense and sparse topology wireless sensor network

  • Haque, Mohammad E.;Zain, Mohammad F.M.;Hannan, Mohammad A.;Rahman, Mohammad H.
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.607-621
    • /
    • 2015
  • Wireless sensor technology has been opened up numerous opportunities to advanced health and maintenance monitoring of civil infrastructure. Compare to the traditional tactics, it offers a better way of providing relevant information regarding the condition of building structure health at a lower price. Numerous domestic buildings, especially longer-span buildings have a low frequency response and challenging to measure using deployed numbers of sensors. The way the sensor nodes are connected plays an important role in providing the signals with required strengths. Out of many topologies, the dense and sparse topologies wireless sensor network were extensively used in sensor network applications for collecting health information. However, it is still unclear which topology is better for obtaining health information in terms of greatest components, node's size and degree. Theoretical and computational issues arising in the selection of the optimum topology sensor network for estimating coverage area with sensor placement in building structural monitoring are addressed. This work is an attempt to fill this gap in high-rise building structural health monitoring application. The result shows that, the sparse topology sensor network provides better performance compared with the dense topology network and would be a good choice for monitoring high-rise building structural health damage.

Canonical correlation analysis based fault diagnosis method for structural monitoring sensor networks

  • Huang, Hai-Bin;Yi, Ting-Hua;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1031-1053
    • /
    • 2016
  • The health conditions of in-service civil infrastructures can be evaluated by employing structural health monitoring technology. A reliable health evaluation result depends heavily on the quality of the data collected from the structural monitoring sensor network. Hence, the problem of sensor fault diagnosis has gained considerable attention in recent years. In this paper, an innovative sensor fault diagnosis method that focuses on fault detection and isolation stages has been proposed. The dynamic or auto-regressive characteristic is firstly utilized to build a multivariable statistical model that measures the correlations of the currently collected structural responses and the future possible ones in combination with the canonical correlation analysis. Two different fault detection statistics are then defined based on the above multivariable statistical model for deciding whether a fault or failure occurred in the sensor network. After that, two corresponding fault isolation indices are deduced through the contribution analysis methodology to identify the faulty sensor. Case studies, using a benchmark structure developed for bridge health monitoring, are considered in the research and demonstrate the superiority of the new proposed sensor fault diagnosis method over the traditional principal component analysis-based and the dynamic principal component analysis-based methods.

Future of Ubiquitous Structural Health Monitoring for Infrastructure Management (유비쿼터스 사회기반구축 및 관리를 위한 건설계측기술의 미래)

  • Rhim Hong-Chul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.63-68
    • /
    • 2006
  • As a part of efforts to enhance construction technology, it is essential to obtain competitive technology which is future-oriented. In this paper, the current status of structural health monitoring techniques is reviewed. Also, ubiquitous system is expected in its use for further development and applications in construction.

  • PDF

Structural Health Monitoring of short to medium span bridges in the United Kingdom

  • Brownjohn, James M.W.;Kripakaran, Prakash;Harvey, Bill;Kromanis, Rolands;Jones, Peter;Huseynov, Farhad
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.259-276
    • /
    • 2016
  • Historically the UK has been a pioneer and early adopter of experimental investigation techniques on new and operation structures, a technology that would now be descried as 'structural health monitoring' (SHM), yet few of these investigations have been enduring or carried out on the long span or tall structures that feature in flagship SHM applications in the Far East.

Computer Vision-based Structural Health Monitoring: A Review

  • Jun Su Park;Joohyun An;Hyo Seon Park
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.4
    • /
    • pp.321-333
    • /
    • 2023
  • Structural health monitoring is a technology or research field that extends the service life of structures and contributes to the prevention of disaster accidents by continuously evaluating the safety, stability, and serviceability of structures as well as allowing timely and proper maintenance. However, the contact-type sensors used for it require considerable time, cost, and labor for installation and maintenance. As an alternative, computer vision has attracted attention recently. Computer vision has the potential to make quality, deformation, and damage monitoring for structures contactless and automated. In this study, research cases in which computer vision was utilized for structural health monitoring are introduced, and its effects and limitations are summarized. Therefore, the applicability and future research directions of computer vision-based structural health monitoring are discussed.

Vibration-based Structural Health Monitoring of Caisson-type Breakwaters Damaged on Rubble Mound (사석마운드가 손상된 케이슨식 방파제의 진동기반 구조건전성 모니터링)

  • Lee, So-Young;Kim, Jeong-Tae;Kim, Heon-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.90-98
    • /
    • 2010
  • In this paper, vibration-based structural health monitoring methods that are suitable for caisson-type structures are examined by an experimental evaluation. To achieve the objective, four approaches are implemented. First, vibration-based structural health monitoring methods are selected to monitor the structural condition of caisson-type breakwaters. Second, a lab-scaled caisson structure is constructed to verify the selected monitoring methods. Third, the vibration characteristics are numerically analyzed using an FE model due to the change in the rubble mound condition. Finally, experimental vibration tests of the lab-scaled caisson structure are performed to monitor the vibration responses due to changes in rubble mound conditions and the performances of the selected methods are examined from the monitoring results.

Structural health monitoring of a newly built high-piled wharf in a harbor with fiber Bragg grating sensor technology: design and deployment

  • Liu, Hong-biao;Zhang, Qiang;Zhang, Bao-hua
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.163-173
    • /
    • 2017
  • Structural health monitoring (SHM) of civil infrastructure using fiber Bragg grating sensor networks (FBGSNs) has received significant public attention in recent years. However, there is currently little research on the health-monitoring technology of high-piled wharfs in coastal ports using the fiber Bragg grating (FBG) sensor technique. The benefits of FBG sensors are their small size, light weight, lack of conductivity, resistance corrosion, multiplexing ability and immunity to electromagnetic interference. Based on the properties of high-piled wharfs in coastal ports and servicing seawater environment and the benefits of FBG sensors, the SHM system for a high-piled wharf in the Tianjin Port of China is devised and deployed partly using the FBG sensor technique. In addition, the health-monitoring parameters are proposed. The system can monitor the structural mechanical properties and durability, which provides a state-of-the-art mean to monitor the health conditions of the wharf and display the monitored data with the BIM technique. In total, 289 FBG stain sensors, 87 FBG temperature sensors, 20 FBG obliquity sensors, 16 FBG pressure sensors, 8 FBG acceleration sensors and 4 anode ladders are installed in the components of the back platform and front platform. After the installation of some components in the wharf construction site, the good signal that each sensor measures demonstrates the suitability of the sensor setup methods, and it is proper for the full-scale, continuous, autonomous SHM deployment for the high-piled wharf in the costal port. The South 27# Wharf SHM system constitutes the largest deployment of FBG sensors for wharf structures in costal ports to date. This deployment demonstrates the strong potential of FBGSNs to monitor the health of large-scale coastal wharf structures. This study can provide a reference to the long-term health-monitoring system deployment for high-piled wharf structures in coastal ports.