• Title/Summary/Keyword: Structural Friction

Search Result 558, Processing Time 0.027 seconds

Experimental Study on Equivalent Linear System for Rotational friction Damper (회전마찰감쇠기의 등가선형시스템에 관한 실험적 연구)

  • 김형섭;박지훈;민경원;이상현;이명규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.296-303
    • /
    • 2004
  • In this study, equivalent linear damping and stiffness of a single-degree-of-freedom (SDOF) structure with a rotational friction damper are estimated using the result of experiments and compared with those obtained from non-linear time history analyses. First, the transfer function of the test model is constructed and then the equivalent stiffness and damping are calculated, using the half-power bandwidth (HPB) method. For comparative study, those properties are estimated based on stochastic theory in the time domain. Both equivalent linear systems identified from experiments and numerical analyses correspond well. Further, it is observed that there exists an optimal clamping force on the rotational friction damper from estimated equivalent damping.

  • PDF

Performance Evaluation of a Nonlinear Cable Damper for Stay Cables Using Wind Vibration Analysis (사장교 케이블의 풍진동 해석을 통한 비선형 댐퍼의 성능 검증)

  • Kim, Saang-Bum;Lee, Sung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.603-606
    • /
    • 2007
  • Wind induced vibration of a stay cable with a nonlinear friction damper is investigated. Stay cables are likely to vibrate under several wind-related environments, and cable dampers can be used to suppress the excessive vibrations of stay cables. Conventional design of cable dampers are based on the equivalent modal damping achieved by the cable damper. However, the equivalent modal damping achieved by nonlinear dampers are depend on the vibration characteristics like the amplitude of the vibration. In this paper, not only the achieved equivalent modal damping, but also the vibration levels under gust wind are analyzed through the time domain buffeting analysis. Numerical simulation results show the efficacy of a nonlinear friction damper for suppressing the excessive vibration of a stay cable.

  • PDF

Experimental Evaluation for Structural Performance of Hybrid Damper Combining Steel Slit and Rotational Friction Damper (강재 슬릿과 회전 마찰형 감쇠 장치를 결합한 복합 감쇠 장치의 실험적 구조 성능 평가)

  • Kim, Yu-Seong;Kang, Joo-Won;Park, Byung-Tae;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.101-109
    • /
    • 2019
  • In order to develop the compatible damping device in various vibration source, a hybrid wall-type damper combining slit and friction damper in parallel was developed. Cyclic loading tests and two-story RC reinforced frame tests were performed for structural performance verification. As a result of the 5-cyclic loading test according to KBC-2016 and low displacement cyclic fatigue test, The hybrid wall type damper increased its strength and the ductility was the same as that of the slit damper. In addition, As a result of the two-layer frame test, the reinforced frame had about twice the strength of the unreinforced frame, and the story drift ratio was satisfied to Life Safety Level.

Performance Analysis of Friction Damper Considering the Change of the Vertical Force (수직력의 변화를 고려한 마찰댐퍼의 거동 분석)

  • Cho, Sung Gook;Park, Woong Ki;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • In this paper, to protect the piping in nuclear power plants and various plant facilities, we have developed a damper using the friction method and carried out a study to analyze the performance. Friction typed damper means a device for attenuating vibration by generating a frictional force to the bearing and the shaft by applying a compressive force to the MER-Spring. In order to analyze the performance of the damper, the properties of MER-Spring and friction materials were analyzed, a study on the effects of friction was carried out, and the behavior of this equation was established. And, to determine whether deformation of the material and to examine the reliability of the behavior equation established, prototypes was produced and, through a performance test and finite element analysis of a damper made of specimens, they were analyzed. As a result, it is noted that the reliability of the material was confirmed, the coefficient of friction have to be adjusted according to the velocity, cyclic loading test and finite element analysis results show exhibits excellent results. In addition, a review of the dynamic loads in the future shall be performed for the usage in more broad fields.

Base isolation performance of a cone-type friction pendulum bearing system

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Sung-Wan;Kim, Nam-Sik
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.227-248
    • /
    • 2015
  • A CFPBS (Cone-type Friction Pendulum Bearing System) was developed to control the acceleration delivered to a structure to prevent the damage and degradation of critical communication equipment during earthquakes. This study evaluated the isolation performance of the CFPBS by numerical analysis. The CFPBS was manufactured in the shape of a cone differenced with the existing FPS (Friction Pendulum System), and a pattern was engraved on the friction surface. The natural frequencies of the CFPBS were evaluated from a free-vibration test with a seismic isolator system consisting of 4 CFPBS. To confirm the earthquake-resistant performance, a numerical analysis program was prepared using the equation of the CFPBS induced from the equations of motion. The equation reported by Tsai for the rolling-type seismic isolation bearings was proposed to design the equation of the CFPBS. Artificial seismic waves that satisfy the maximum earthquake scale of the Korean Building Code-Structural (KBC-2005) were created and verified to review the earthquake-resistant performance of the CFPBS by numerical analysis. The superstructural mass of the CFPBS and the skew angle of friction surface were considered for numerical analysis with El Centro NS, Kobe NS and artificial seismic waves. The CFPBS isolation performance evaluation was based on the numerical analysis results, and comparative analysis was performed between the results from numerical analysis and simplified theoretical equation under the same conditions. The validity of numerical analysis was verified from the shaking table test.

Semi-active friction dampers for seismic control of structures

  • Kori, Jagadish G.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.493-515
    • /
    • 2008
  • Semi-active control systems have attracted a great deal of attention in recent years because these systems can operate on battery power alone, proving advantageous during seismic events when the main power source of the structure may likely fail. The behavior of semi-active devices is often highly non-linear and requires suitable and efficient control algorithm. This paper presents the comparative study and performance of variable semi-active friction dampers by using recently proposed predictive control law with direct output feedback. In this control law, the variable slip force of semi-active variable friction damper is kept slightly lower than the critical friction force, which allows the damper to remain in the slip state during an earthquake, resulting in improved energy dissipation capability. This control algorithm is able to produce a continuous and smooth slip forces for a variable friction damper. The numerical examples include a structure controlled with multiple variable semi-active friction dampers and with multiple passive friction dampers. A parameter, gain multiplier defined as the ratio of damper force to critical damper control force, is investigated under four different real earthquake ground motions, which plays an important role in the present control algorithm of the damper. The numerically evaluated optimum parametric value is considered for the analysis of the structure with dampers. The numerical results of the variable friction dampers show better performance over the passive dampers in reducing the seismic response of structures.

An incremental convex programming model of the elastic frictional contact problems

  • Mohamed, S.A.;Helal, M.M.;Mahmoud, F.F.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.431-447
    • /
    • 2006
  • A new incremental finite element model is developed to simulate the frictional contact of elastic bodies. The incremental convex programming method is exploited, in the framework of finite element approach, to recast the variational inequality principle of contact problem in a discretized form. The non-classical friction model of Oden and Pires is adopted, however, the friction effect is represented by an equivalent non-linear stiffness rather than additional constraints. Different parametric studies are worked out to address the versatility of the proposed model.

Structural and Thermal Analysis of Disk Brake (디스크 브레이크의 구조 및 열 해석)

  • Cho, Jae-Uug;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.211-215
    • /
    • 2010
  • Continuous contraction and expansion of disk brake can be due to friction and temperature difference at repeated sudden braking. As serious vibration at disk is produced, the braking force will be changed ununiformly and braking system can not be stabilized. Temperature and heat flux at disk brake are investigated by structural and thermal analysis in this study. The maximum equivalent stress and displacement are shown respectively at the ventilated hole and the lower part of disk plate. At thermal analysis of initial state, temperature on disk plate is distributed from $95.9^{\circ}C$ to $100^{\circ}C$. The maximum heat flux of $0.0168W/mm^2$ is shown at the inner friction part between disk plate and pad. At thermal analysis of transient state, temperature on disk plate is distributed from $95^{\circ}C$ to $96.5^{\circ}C$ after 100 second. The maximum heat flux of $0.0024W/mm^2$ is also shown at the inner friction part between disk plate and pad. By comparing with initial state, the temperature on disk plate is more uniformly distributed and heat flux is more decreased by 7 times at transient state.

Flutter Characteristics ofAircraft Wing Considering Control Surface and Actuator Dynamics with Friction Nonlinearity

  • Lee, Seung-Jun;Lee, In;Shin, Won-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.140-147
    • /
    • 2007
  • Whenever the hinge axis of aircraft wing rotates, its stiffness varies. Also, there are nonlinearities in the connection of the actuator and the hinge axis, and it is necessary to inspect the coupled effects between the actuator dynamics and the hinge nonlinearity. Nonlinear aeroelastic characteristics are investigated by using the iterative V-g method. Time domain analyses are also performed by using Karpel's minimum state approximation technique. The doublet hybrid method(DHM) is used to calculate the unsteady aerodynamic forces in subsonic regions. Structural nonlinearity located in the load links of the actuator is assumed to be friction. The friction nonlinearity of an actuator is identified by using the describing function technique. The nonlinear flutter analyses have shown that the flutter characteristics significantly depends on the structural nonlinearity as well as the dynamic stiffness of an actuator. Therefore, the dynamic stiffness of an actuator as well as the nonlinear effect of hinge axis are important factors to determine the flutter stability.

Modeling of triple concave friction pendulum bearings for seismic isolation of buildings

  • Yurdakul, Muhammet;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.315-334
    • /
    • 2011
  • Seismic isolated building structures are examined in this study. The triple concave friction pendulum (TCFP) is used as a seismic isolation system which is easy to be manufactured and enduring more than traditional seismic isolation systems. In the TCFP, take advantage of weight which pendulum carrying and it's geometry in order to obtain desirable result of seismic isolation systems. These systems offer advantage to buildings which subject to severe earthquake. This is result of damping force of earthquake by means of their internal constructions, which consists of multiple surfaces. As the combinations of surfaces upon which sliding is occurring change, the stiffness and effective friction change accordingly. Additionally, the mentioned the TCFP is modeled as of a series arrangement of the three single concave friction pendulum (SCFP) bearings. A two dimensional- and eight- story of a building with and without isolation system are used in the time history analysis in order to investigate of the effectiveness of the seismic isolation systems on the buildings. Results are compared with each other to emphasize efficiency of the TCFP as a seismic isolation device against the other friction type isolation system like single and double concave surfaces. The values of the acceleration, floor displacement and isolator displacement obtained from the results by using different types of the isolation bearings are compared each other. As a result, the findings show that the TCFP bearings are more effective devices for isolation of the buildings against severe earthquakes.