• 제목/요약/키워드: Structural Feature

검색결과 618건 처리시간 0.024초

Data abnormal detection using bidirectional long-short neural network combined with artificial experience

  • Yang, Kang;Jiang, Huachen;Ding, Youliang;Wang, Manya;Wan, Chunfeng
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.117-127
    • /
    • 2022
  • Data anomalies seriously threaten the reliability of the bridge structural health monitoring system and may trigger system misjudgment. To overcome the above problem, an efficient and accurate data anomaly detection method is desiderated. Traditional anomaly detection methods extract various abnormal features as the key indicators to identify data anomalies. Then set thresholds artificially for various features to identify specific anomalies, which is the artificial experience method. However, limited by the poor generalization ability among sensors, this method often leads to high labor costs. Another approach to anomaly detection is a data-driven approach based on machine learning methods. Among these, the bidirectional long-short memory neural network (BiLSTM), as an effective classification method, excels at finding complex relationships in multivariate time series data. However, training unprocessed original signals often leads to low computation efficiency and poor convergence, for lacking appropriate feature selection. Therefore, this article combines the advantages of the two methods by proposing a deep learning method with manual experience statistical features fed into it. Experimental comparative studies illustrate that the BiLSTM model with appropriate feature input has an accuracy rate of over 87-94%. Meanwhile, this paper provides basic principles of data cleaning and discusses the typical features of various anomalies. Furthermore, the optimization strategies of the feature space selection based on artificial experience are also highlighted.

Color-Image Guided Depth Map Super-Resolution Based on Iterative Depth Feature Enhancement

  • Lijun Zhao;Ke Wang;Jinjing, Zhang;Jialong Zhang;Anhong Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2068-2082
    • /
    • 2023
  • With the rapid development of deep learning, Depth Map Super-Resolution (DMSR) method has achieved more advanced performances. However, when the upsampling rate is very large, it is difficult to capture the structural consistency between color features and depth features by these DMSR methods. Therefore, we propose a color-image guided DMSR method based on iterative depth feature enhancement. Considering the feature difference between high-quality color features and low-quality depth features, we propose to decompose the depth features into High-Frequency (HF) and Low-Frequency (LF) components. Due to structural homogeneity of depth HF components and HF color features, only HF color features are used to enhance the depth HF features without using the LF color features. Before the HF and LF depth feature decomposition, the LF component of the previous depth decomposition and the updated HF component are combined together. After decomposing and reorganizing recursively-updated features, we combine all the depth LF features with the final updated depth HF features to obtain the enhanced-depth features. Next, the enhanced-depth features are input into the multistage depth map fusion reconstruction block, in which the cross enhancement module is introduced into the reconstruction block to fully mine the spatial correlation of depth map by interleaving various features between different convolution groups. Experimental results can show that the two objective assessments of root mean square error and mean absolute deviation of the proposed method are superior to those of many latest DMSR methods.

Probabilistic-based damage identification based on error functions with an autofocusing feature

  • Gorgin, Rahim;Ma, Yunlong;Wu, Zhanjun;Gao, Dongyue;Wang, Yishou
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1121-1137
    • /
    • 2015
  • This study presents probabilistic-based damage identification technique for highlighting damage in metallic structures. This technique utilizes distributed piezoelectric transducers to generate and monitor the ultrasonic Lamb wave with narrowband frequency. Diagnostic signals were used to define the scatter signals of different paths. The energy of scatter signals till different times were calculated by taking root mean square of the scatter signals. For each pair of parallel paths an error function based on the energy of scatter signals is introduced. The resultant error function then is used to estimate the probability of the presence of damage in the monitoring area. The presented method with an autofocusing feature is applied to aluminum plates for method verification. The results identified using both simulation and experimental Lamb wave signals at different central frequencies agreed well with the actual situations, demonstrating the potential of the presented algorithm for identification of damage in metallic structures. An obvious merit of the presented technique is that in addition to damages located inside the region between transducers; those who are outside this region can also be monitored without any interpretation of signals. This novelty qualifies this method for online structural health monitoring.

초정밀 대면적 미세 형상 가공기의 구조 특성 해석 (Structural Characteristic Analysis of an Ultra-Precision Machine for Machining Large-Surface Micro-Features)

  • 김석일;이원재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1469-1474
    • /
    • 2007
  • In recent years, research to machine large-surface micro-features has become important because of the light guide panel of a large-scale liquid crystal display and the bipolar plate of a high-capacity proton exchange membrane fuel cell. In this study, in order to realize the systematic design technology and performance improvements of an ultra-precision machine for machining the large-surface micro-features, a structural characteristic analysis was performed using its virtual prototype. The prototype consisted of gantry-type frame, hydrostatic feed mechanisms, linear motors, brushless DC servo motor, counterbalance mechanism, and so on. The loop stiffness was estimated from the relative displacement between the tool post and C-axis table, which was caused by a cutting force. Especially, the causes of structural stiffness deterioration were identified through the structural deformation analysis of sub-models.

  • PDF

APR1400 원자로 내부배럴집합체 상부판 구조응답해석 (Structural Response Analysis on Inner Barrel Assembly Top Plate of APR1400 Reactor Vessel)

  • 김규형;고도영;김성환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.907-910
    • /
    • 2012
  • Since the inner barrel assembly of the Advanced Power Reactor 1400 reactor vessel is a new design feature introduced instead of CEA(control element assembly) shroud assembly, the inner barrel assembly can be a significant object of structural integrity assessment. This paper covers the structural responses of top plate, which is a component of the inner barrel assembly, against the deterministic hydraulic load induced by pump pulsation and the random hydraulic load induced by turbulence of coolant. The top plate responds to the deterministic hydraulic load more than to the random hydraulic load and shows enough structural integrity. The results of this paper will be important basis for the selection of instruments and measurement location.

  • PDF

구조 형태에 따른 1차원 보와 2차원 평판 구조 해석 비교

  • 강유진;심지수
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.274-278
    • /
    • 2015
  • There are different kinds of aircrafts, such as conventional airplane, rotorcraft, fighter, and unmanned aerial vehicle. Their shape and feature are dependent upon their assigned mission. One of the fundamental analyses during the design of the aircraft is the structural analysis. The structural analysis becomes more complicated and needs more computations because of the on-going complex aircrafts' structure. In order for efficiency in the structural analysis, a simplified approach, such as equivalent beam or plate model, is preferred. However, it is not clear which analysis will be appropriate to analyze the realistic configuration, i.e., an equivalent beam or plate analysis for an aircraft wing. It is necessary to assess the boundary between the one-dimensional beam analysis and the two-dimensional plate theory for an accurate structural analysis. Thus, in this paper, the static structural analysis results obtained by EDISON solvers were compared with the three-dimesional results obtained from MSC NASTRAN. Before that, EDISON program was verified by comparing the results with those from MSC NASTRAN program and analytic solution.

  • PDF

스터드 보울트로 조립된 체결체의 강성 평가 (Determination of Stiffness in Stud Bolted Connection)

  • 김태완;성기광;손용수;박성호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.181-185
    • /
    • 1993
  • A useful finite element method to determine the stiffness of assembled member by stud bolt was introduced in this paper. Since threads on clamped members and stud bolts may produce different stress distribution, brief theories and equations based on bolt and nut may produce less conservative results or, this case. A finite element model using non-linear gap element was indtroduced to find out the basic feature of stress distribution caused by threads on both stud and member.

  • PDF

Predictive Research into Desirable Features of Machine Tools in the Year 2015 and Beyond - Private Viewpoints and Assertion -

  • Yos
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 Handout for 2000 Inter. Machine Tool Technical Seminar
    • /
    • pp.1-18
    • /
    • 2000
  • This paper describes firstly a prediction for desirable features of the machine tool in the year 2015 and beyond, and then delineates something definite in relation to some representative machine tools, which could be realised in very near future. The paper depicts furthermore another aspect of future machine tools, I. e., innovative structural designs. In addition, author asserts the importance of grass root-like knowledge, when predicting the desirable feature of machine tools future together with showing some evidences.

  • PDF

로드뷰 영상에서 번호판 영역의 저해상도 특징을 이용한 원거리 자동차 번호판 영역 검출 (Long Distance Vehicle License Plate Region Detection Using Low Resolution Feature of License Plate Region in Road View Images)

  • 오명관;박종천
    • 디지털융복합연구
    • /
    • 제15권1호
    • /
    • pp.239-245
    • /
    • 2017
  • 본 논문은 포털 사이트에서 서비스 되고 있는 로드뷰 영상에서 개인정보 보호를 위해 자동차 번호판 영역을 검출하는 방법을 제안한다. 로드뷰 영상에서 번호판 영역은 거리에 따라 서로 다른 특징을 갖고 있으며, 특히 원거리의 번호판 영역은 저해상도 특징으로 인해 번호판 영역을 검출하는데 어려움이 있다. 따라서 본 연구에서는 근거리에 있는 번호판 영역은 에지 특징을 이용하고 원거리에 있는 번호판 영역은 MSER 특징을 이용하여 번호판 영역을 검출하는 기법을 제안하였다. 각각의 방법으로 검출된 영역을 번호판 후보 영역으로 선정하고, 자동차 번호판의 숫자는 구조적 특징을 갖기 때문에 이를 이용하여 최종적인 번호판 영역을 검출하였다. 실험결과, 다양한 로드뷰 영상에서 precision 75%, recall 93%, 그리고 F-Score 80%의 성능평가 결과를 얻었다.

트랜잭션 기반 머신러닝에서 특성 추출 자동화를 위한 딥러닝 응용 (A Deep Learning Application for Automated Feature Extraction in Transaction-based Machine Learning)

  • 우덕채;문현실;권순범;조윤호
    • 한국IT서비스학회지
    • /
    • 제18권2호
    • /
    • pp.143-159
    • /
    • 2019
  • Machine learning (ML) is a method of fitting given data to a mathematical model to derive insights or to predict. In the age of big data, where the amount of available data increases exponentially due to the development of information technology and smart devices, ML shows high prediction performance due to pattern detection without bias. The feature engineering that generates the features that can explain the problem to be solved in the ML process has a great influence on the performance and its importance is continuously emphasized. Despite this importance, however, it is still considered a difficult task as it requires a thorough understanding of the domain characteristics as well as an understanding of source data and the iterative procedure. Therefore, we propose methods to apply deep learning for solving the complexity and difficulty of feature extraction and improving the performance of ML model. Unlike other techniques, the most common reason for the superior performance of deep learning techniques in complex unstructured data processing is that it is possible to extract features from the source data itself. In order to apply these advantages to the business problems, we propose deep learning based methods that can automatically extract features from transaction data or directly predict and classify target variables. In particular, we applied techniques that show high performance in existing text processing based on the structural similarity between transaction data and text data. And we also verified the suitability of each method according to the characteristics of transaction data. Through our study, it is possible not only to search for the possibility of automated feature extraction but also to obtain a benchmark model that shows a certain level of performance before performing the feature extraction task by a human. In addition, it is expected that it will be able to provide guidelines for choosing a suitable deep learning model based on the business problem and the data characteristics.