• Title/Summary/Keyword: Structural Control System

Search Result 1,484, Processing Time 0.028 seconds

Weld Induced Deformation Control of Panel Blocks (평 블록의 용접변형 제어)

  • 이주성
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.205-209
    • /
    • 2000
  • This paper is concerned with development of the production-oriented structural design information system to predict the inaccuracy level of panel blocks and to consider the result at the structural design stage. Emphasis is placed on that the inaccuracy during production should likely be considered at the structural design stage to reduce the undesirable adjusting work and therefore to enhance the productivity. The primary goal of the present study is to consider the productivity and the efficient design at the same time for a high quality product of panel block. Usefulness of the developed information are illustrated through some application examples.

  • PDF

Active control for Seismic Response Reduction using Modal-fuzzy Approach (모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어)

  • Choi, Kang-Min;Cho, Sang-Won;Oh, Ju-Won;Lee, In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.409-416
    • /
    • 2004
  • An active modal-fuzzy control method using hydraulic actuators is presented for seismic response reduction. In the proposed control system, a new fuzzy controller designed in the modal space produces the desired active control force. This type controller has all advantages of the fuzzy control algorithm and modal approach. Since it is very difficult to select input variables used in fuzzy controller among an amount of state variables in the active fuzzy control system the presented algorithm adopts the modal control algorithm which is able to consider more easily information of all state variables in civil structures that are usually dominated by first few modes. In other words, all information of the whole structure can be considered in the control algorithm evaluated to reduce seismic responses and it can be efficient for especially civil structures. In addition, the presented algorithm is expected to magnify utility and performance caused by efficiency that the fuzzy algorithm can handle complex model more easily. An active modal-fuzzy control scheme is applied together with a Kalman filter and a low-pass filter to be applicable to real civil structures. A Kalman filter is considered to estimate modal states and a low-pass filter was used to eliminate spillover problem. The results of the numerical simulations far a wide amplitude range o f loading conditions and for historic earthquakes having various frequency components show that the proposed active modal-fuzzy control system can be beneficial in reducing seismic responses of civil structures.

  • PDF

Lateral Drift Control Technique of High-Rise Shear Wall Core Structural System (고층 전단벽 코어구조시스템의 횡변위 제어방안)

  • Han, Seong-Baek;Kang, Myoung-Hee;Nam, Kyung-Yun;Lee, Seong-Su;Lee, Han-Joo;Kim, Ho-Soo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.151-154
    • /
    • 2008
  • This study presents the efficient lateral drift control optimal technique that can control quantitatively lateral drift of high-rise structures. To this end, optimal design algorithm is formulated and then lateral drift control optimal program is developed. The 130 story shear wall core model is considered to illustrate the features of lateral drift control technique proposed in this study

  • PDF

Evaluation of Structural Integrity of A Plant Control Panel under Seismic (내진에 대한 Plant Control Panel 의 구조적 건전성 평가)

  • Lee, Heung-Shik;Kim, Myung-Gu;Cho, Chong-Du
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.958-961
    • /
    • 2004
  • This paper presents a plant control panel model for the analysis. Seismic qualification analysis for the plant control panel is carried out to confirm the structural integrity under the seismic conditions represented by required response spectra(RRS). For the analysis finite element method(FEM) is used. And mode combinations are adopted to obtain the reliability of the spectrum analysis. The analysis results shows that the plant control panel system is designed as a dynamically rigid assembly, without any resonance frequency below 33Hz. The calculated stress of the plant control panel system is much less than yield stress of used steel.

  • PDF

Seismic response control of a building complex utilizing passive friction damper: Analytical study

  • Ng, C.L.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.85-105
    • /
    • 2006
  • Control of structural response due to seismic excitation in a manner of coupling adjacent buildings has been actively developed, and most attention focused on those buildings of similar height. However, with the rapid development of some modern cities, multi-story buildings constructed with an auxiliary low-rise podium structure to provide extra functions to the complex become a growing construction scheme. Being inspired by the positively examined coupling control approach for buildings with similar height, this paper aims to provide a comprehensive analytical study on control effectiveness of using friction dampers to link the two buildings with significant height difference to supplement the recent experimental investigation carried out by the writers. The analytical model of a coupled building system is first developed with passive friction dampers being modeled as Coulomb friction. To highlight potential advantage of coupling the main building and podium structure with control devices that provide a lower degree of coupling, the inherent demerit of rigid-coupled configuration is then evaluated. Extensive parametric studies are finally performed. The concerned parameters influencing the design of optimal friction force and control efficiency include variety of earthquake excitation and differences in floor mass, story number as well as number of dampers installed between the two buildings. In general, the feasibility of interaction control approach applied to the complex structure for vibration reduction due to seismic excitation is supported by positive results.

Examination on High Vibration of Recirculation System for Feed Water Piping in Combined Cycle Power Plant (복합 발전소 주급수 재순환 배관계의 고진동 현상 및 대책)

  • Kim, Yeon-Whan;Kim, Jae-Won;Park, Hyun-Gu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.648-654
    • /
    • 2011
  • The feed-water piping system constitutes a complex flow impedance network incorporating dynamic transfer characteristics which will amplify some pulsation frequencies. Understanding pressure pulsation waves for the feed-water recirculation piping system with cavitation problem of flow control valve is very important to prevent acoustic resonance. Feed water recirculation piping system is excited by potential sources of the shock pulse waves by cavitation of flow control valve. The pulsation becomes the source of structural vibration at the piping system. If it coincides with the natural frequency of the pipe system, excessive vibration results. High-level vibration due to the pressure pulsation affects the reliability of the plant piping system. This paper discusses the piping vibration due to the effect of shock pulsation by the cavitation of the flow control valves for the recirculation piping of feed-water pump system in combined cycle power plants.

  • PDF

Study on Structural Integrity of Bearingless Main Rotor Hub System of Helicopter (헬리콥터 무베이링 메인 로터 허브 시스템의 구조 건전성에 관한 연구)

  • Lee, Mu-Hyoung;Park, Ill-Kyoung;Kim, Sung-Joon;Hwang, In-Hee;Kim, Tae-Joo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • Rotor system is a very important part which produce lift, thrust and control force in helicopter. Component of rotor system must have structural integrity for applied load. The estimation of structural integrity is regarded greatly as important in aerospace field. In this study, the process of structural analysis performed for bearingless main rotor system of helicopter. The composite flexbeam and torque tube of bearingless main rotor are very thick, so 3D layered soild elements of MSC.PATRAN were used to get the finite element analysis results. To estimate structural integrity, non-linear static analysis considering geometric non-linearity is performed. In addition, detailed finete element analysis and non-linear static analysis are performed to consider the stress concentration for fitting effect and contact surface. The estimation process of structural integrity for bearingless main rotor system of helicopter may help the design.

Probabilistic study on buildings with MTMD system in different seismic performance levels

  • Etedali, Sadegh
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.429-441
    • /
    • 2022
  • A probabilistic assessment of the seismic-excited buildings with a multiple-tuned-mass-damper (MTMD) system is carried out in the presence of uncertainties of the structural model, MTMD system, and the stochastic model of the seismic excitations. A free search optimization procedure of the individual mass, stiffness and, damping parameters of the MTMD system based on the snap-drift cuckoo search (SDCS) optimization algorithm is proposed for the optimal design of the MTMD system. Considering a 10-story structure in three cases equipped with single tuned mass damper (STMS), 5-TMD and 10-TMD, sensitivity analyses are carried out using Sobol' indices based on the Monte Carlo simulation (MCS) method. Considering different seismic performance levels, the reliability analyses are done using MCS and kriging-based MCS methods. The results show the maximum structural responses are more affected by changes in the PGA and the stiffness coefficients of the structural floors and TMDs. The results indicate the kriging-based MCS method can estimate the accurate amount of failure probability by spending less time than the MCS. The results also show the MTMD gives a significant reduction in the structural failure probability. The effect of the MTMD on the reduction of the failure probability is remarkable in the performance levels of life safety and collapse prevention. The maximum drift of floors may be reduced for the nominal structural system by increasing the TMDs, however, the complexity of the MTMD model and increasing its corresponding uncertainty sources can be caused a slight increase in the failure probability of the structure.

LRB-based Hybrid Base Isolation Systems for Seismically Excited Cable-Stayed Bridges (지진하중을 받는 사장교를 위한 LRB-기반 복합 기초격리 시스템)

  • 정형조;박규식;이헌재;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.527-534
    • /
    • 2003
  • This paper presents the LRB-based hybrid base isolation systems employing additional active/semiactive control devices for seismic protection of cable-stayed bridges by examining the ASCE first generation benchmark problem for a cable-stayed bridge. In this study, ideal hydraulic actuators (HAs) and ideal magnetorheological dampers (MRDs) are considered as additional active and semiactive control devices, respectively. Numerical simulation results show that all the hybrid base isolation systems are effective in reducing the structural responses of the benchmark cable-stayed bridge under the historical earthquakes considered. The simulation results also demonstrate that the hybrid base isolation system employing semiactive MRBs is robust to the stiffness uncertainty of the structure, while the hybrid system with active HAs is not. Therefore, the LRB-based hybrid base isolation system employing MRDs could be more appropriate in real applications for full-scale civil infrastructures.

  • PDF

A Study of a Seamless Handover Support for WSN based Information Transmission in Structural Health Monitoring Systems

  • Park, Byungjoo
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.174-184
    • /
    • 2018
  • The efficiency and safety of social-overhead capital (SOC) public infrastructures have become an eminent social concern. In this regard, a continuous structural health monitoring has been widely implemented to oversee the robustness of such public infrastructures for the safety of the public. This paper deals with the analysis of a distributed mobility management (DMM) support for wireless sensor network (WSN) based information transmission system. The partial DMM support separates the data and control plane infrastructures, wherein, the control plane is managed by a particular mobility management network entity, while the data plane is distributed by the mobility anchors. The system will be able to optimize the information transmission for a wireless structural health monitoring of SOC public infrastructures specifically designed for bridges, and thus, guarantees the safety of public commuters.